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The Netfilter/Xtables/iptables framework gives us the possibility to add features. To do
so, we write kernel modules that register against this framework. Also, depending on the
feature’s category, we write an iptables userspace module. By writing your new extension, you
can match, mangle, track and give faith to a given packet or complete flows of interrelated
connections. In fact, you can do almost everything you want in this world. Beware that a little
error in a kernel module can crash the computer.

We will explain the skeletal structures of Xtables and Netfilter modules with complete code
examples and by this way, hope to make the interaction with the framework a little easier
to understand. We assume you already know a bit about iptables and that you do have C
programming skills.
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Part I
Xtables
Xtables is about the table-based firewalling that you most likely know from running the ipta-
bles(8) command. In this part, the structure of modules usable with iptables will be described.

This version of the book focuses on the Netfilter API as found in Linux 2.6.35–3.5.
For iptables, at least version 1.4.5 is needed, because it contains the necessary initial infras-

tructure to support external (out-of-tree) iptables extensions. This book will only concentrate
on recent API version(s) only however, which is libxtables.so.7 (starting from iptables 1.4.12) as
of this writing. It is deemed that upgrading iptables is much easier than to upgrade the kernel.
Since iptables 1.4.2, a lot of code has been moved into a shared library, whose “.so-version” ba-
sically indicates the API versions supported. This API version is decoupled from the iptables
release version.

Jan released a new package called Xtables-addons at the end of January 2008 that replaces
the old patch-o-matic(-ng) where you can easily add new extensions without having to bother
about the build infrastructure complexities or horrid patching strategies. It also provides API
compatibility glue code so that you can write extensions using (a slight modification of) the
latest kernel API and get it running on older kernels. Currently, Xtables-addons has some glue
code to provide backwards compatibility down to 2.6.39.

This book covers a substantial amount of module code. If you would like to get started with
pre-existing code instead of trying to write your module from scratch, get ahold of the Xtables-
addons package, or a clone of its git repository. The repository also has a branch “demos”
which contains the sample module xt_ipaddr which is not included in the normal tarball.

See http://xtables-addons.sf.net/ for details and sources.

1 Nomenclature
x_tables refers to the kernel module that provides the generic, (mostly) protocol-independent
table-based firewalling used in Linux, and ip6_tables, ip_tables, arp_tables and ebtables are the
kernel modules providing family-specific tables for the ip6tables, iptables, arptables and ebtables
tools.

By convention, names of Xtables matches are always lower-case, and names of Xtables
targets are upper-case. This is not a hard rule, though. In fact, Ebtables used to use lower-case
target names, e. g.mark_m for the match, mark for the target. The choice to go for upper-casing,
or using suffixes, is largely a historic decision for (now-)historic reasons, and may limitations
have been lifted since then, and in fact, for new modules, it is requested that their filename be
lowercase to avoid clashes on case-insensitive filesystems.

Xtables module names are prefixed with xt_, forming, for example, xt_connmark for the
connmark match. ip6, ip, arp and eb table modules traditionally used distinct prefixes, ac-
cording to their subsystem. They were ip6t_, ipt_, arpt_ and ebt_, respectively. Use of these
is discouraged and is to be avoided for new modules. Today, these prefixes only survive as
aids for directed kernel module loading in module aliases (similar to “net-pf-2-proto-132” and
“net-pf-10-proto-132” for sctp.ko).

MODULE_ALIAS("ip6t_mymatch ");
MODULE_ALIAS("ipt_mymatch ");
MODULE_ALIAS("arpt_mymatch ");
MODULE_ALIAS("ebt_mymatch ");
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Add lines like these to the source code of your module — ideally only those which you support.
If your module does not match on ARP packets for example, do not add an arpt_ alias. Of
course, use upper-case as mentioned earlier for targets.

Filenames are usually set forth by their logical module name, i. e. xt_mymatch .c . Orig-
inally, each match and each target was put into its own source file, but since the module
overhead is not negligible after all, a number of extensions are bundled into one module. Ex-
amples from Linux 2.6.37 are xt_mark.c, xt_connmark.c, xt_HL.c, xt_DSCP.c. Reasons for
this are their close nature, reducing compile time, reducing memory footprint on modular ker-
nels, and the avoidance of filenames that only differ in case, which are known to be a trouble
on case-insensitive filesystems. As long as it has the appropriate MODULE_ALIASes to ensure
it can be loaded — if it is not already statically compiled into the kernel — there is no hard
requirement on the filename.

As far as userspace is concerned, iptables modules use libxt_ as prefix, and modules must
adhere to it because both the Makefiles and the iptables codebase responsible for loading plugins
have it hardcoded on it.

2 Match extensions
The duty of a match module is to inspect each packet received and to decide whether it
matches or not, according to our criteria. The criteria can be quite anything you can think
of, though there are limits. The most obvious matches are of course match by source or
destination address, which is done inside Xtables rather than a separate match, and source
and/or destination port for SCTP/TCP/UDP (and/or others), which on the other hand, is
actually done inside a match. (This is because TCP is layer 4 already, while the IP address is
with layer 3.) There are also advanced modules, such as xt_connlimit to match on concurrent
number of connections. Combined with exotics such as xt_time (to match on the system time),
daytime-based connection limits could be enforced, for example. Many matches are simple
piece of code, others require a bit more code for their housekeeping (such as xt_hashlimit).

A match generally may not modify much — as you will later see from the function pro-
totypes, the skb is marked const, as are other variables. Modifying any of this data should
only be done in targets, which are discussed later, but again, there are exceptions. In fact, the
boundary between match and target is fading a bit.

In this chapter, we will be writing a simple IP address match (even if Xtables does a better
job at it) called “xt_ipaddr”.

2.1 Header file
The header file for our match is where you describe the binary interface between userspace and
the kernel module. We usually begin with the header file because it is the first thing that comes
to mind — when you ask yourself “what do I actually want to match (against)?”, and what
information needs to be conveyed to the kernel.

As far as our xt_ipaddr sample module is concerned, we want to match on source and/or
destination address, so we need storage for these, and also a flags field with which we indicate
whether to consider source/destination address in the match, or not, and whether (or not) to
invert the result. So we have:

#ifndef _LINUX_NETFILTER_XT_IPADDR_H
#define _LINUX_NETFILTER_XT_IPADDR_H 1

enum {
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XT_IPADDR_SRC = 1 <�< 0,
XT_IPADDR_DST = 1 <�< 1,
XT_IPADDR_SRC_INV = 1 <�< 2,
XT_IPADDR_DST_INV = 1 <�< 3,

};

These are the constant names for the flags field. We use 1 <�< n here because that is a bit
less error prone when initially typing the raw values like 0x04, 0x08, 0x10, like accidentally
writing a number which has more than one bit set.

Alternatively, we could have put the invert flags into a separate variable. Such is use-
ful when the match flags are the same as the invert flags. The main code would then use
(invert_flags & XT_IPADDR_SRC) instead of (flags & XT_IPADDR_SRC_INV) to test for in-
version, for example. We do not do this in our example however, since flags and invert flags fit
into the 8-bit flags member, and a split would otherwise take up 16.

You should not use types which do not have a fixed width for the parameter exchange —
short, int and long are all taboo! This is because long for example has a different size in 32-
and 64-bit environments. On x86, long is 4 bytes, but on x86_64, it is 8 bytes. If you run a
32-bit iptables binary with a 64-bit kernel — and this is very common on sparc64 and others
(ppc64, and the soon-to-be x32) —, problems can arise because the size of the types is not the
same on both ends. Instead, use the types listed in table 1.

char short int/long long/long long
Unsigned host-endian __u8 __u16 __u32 __aligned_u64
Signed host-endian __s8 __s16 __s32 __s64 __attribute__((aligned(8)))

Unsigned little-endian __u8 __le16 __le32 __aligned_le64
Unsigned big-endian __u8 __be16 __be32 __aligned_be64

Table 1: Fixed types

Note: __aligned_u64, __aligned_be64 and __aligned_le64, were added in Linux 2.6.36.
Before that, they had no leading underscores.

char is defined to be of size 1, so it is safe to use. For clarity, use char for characters and
strings, and __u8 (or __s8) for numbers. 64-bit quantities may need to be specially aligned; it
is required that the struct has the same layout. See section 4.4 for details. There is indeed no
aligned_s64 type available, nor are there premade types for signed little/big-endian.

Note that __le* and __be* are only annotations used in conjunction with sparse to flag up
possible coding errors. For the C compiler, they are equivalent to __u*, and you still need to
do byteswapping using the appropriate functions (see appendix A).

Try to arrange the members in the struct so that it does not leave any reducible padding
holes; this will benefit memory economy and cache utilization.

struct xt_ipaddr_mtinfo {
union nf_inet_addr src, dst;
__u8 flags;

};

#endif /* _LINUX_NETFILTER_XT_IPADDR_H */

union nf_inet_addr is a compound introduced in Linux 2.6.25 that can store either an IPv6
or IPv4 address (in various types actually; ip6 is layout-compatible to in6 and ip is compatible
to in). It is defined in <linux/netfilter.h>, and for struct in6_addr and struct in_addr
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to work, you need to include <linux/ipv6.h> and <linux/ip.h> in kernel-space, or <netinet/
in.h> in userspace, respectively. Xtables-addons provides necessary glue code to make it work
on older kernels too.

union nf_inet_addr {
__be32 ip;
__be32 ip6[4];
struct in_addr in;
struct in6_addr in6;

};

What address type it actually stored (i. e. how the union should be interpreted) is passed on
elsewhere in the Xtables framework. For example, ip6tables will always fill src and dst with
IPv6 addresses and only ever calls the NFPROTO_IPV6 version of the xt_ipaddr match. This is
also why there are often two separate match functions, one for IPv6 (ipaddr_mt6) and one for
IPv4 (ipaddr_mt4). Of course you could also record the address family inside the struct and
instead combine our two match functions. But you would not gain anything from it — usually
you cannot combine any code because the IP header is of different type (struct ipv6hdr and
struct iphdr), requiring just as much C code.

2.2 Structural definition
At first, let us look at some basic structures. The xt_match and related structures are defined
in <linux/netfilter/x_tables.h>. Fields that are not of interest (mostly internal fields like
the linked list fields) have been left out here.

struct xt_action_param {
const struct xt_match *match;
const void *matchinfo;
const struct net_device *in, *out;
int fragoff;
unsigned int thoff;
unsigned int hook;
uint8_t family;
bool hotdrop;

};

struct xt_mtchk_param {
const char *table;
const void *entryinfo;
const struct xt_match *match;
void *matchinfo;
unsigned int hook_mask;
uint8_t family;

};

struct xt_mtdtor_param {
const struct xt_match *match;
void *matchinfo;
uint8_t family;

};
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struct xt_match {
const char name[XT_EXTENSION_MAXNAMELEN];
uint8_t revision;
unsigned short family;
const char *table;
unsigned int hooks;
unsigned short proto;

bool (*match)(const struct sk_buff *skb,
struct xt_action_param *);

int (*checkentry)(const struct xt_mtchk_param *);
void (*destroy)(const struct xt_mtdtor_param *);

struct module *me;
};

The number of arguments to the functions has grown over time, as have the numbers of exten-
sions, and it became a lengthy job to update all of them whenever an API change was required.
Moreover, many extensions do not even use all parameters. Linux 2.6.28(-rc1) thus introduced
the parameter structures named struct xt_*_param that collect all of the arguments. The
skb remains outside the structure for the compiler’s convenience of applying its optimizations.
Xtables-addons uses the same function signatures for its modules.

2.3 Module initialization
We initialize the common fields in the xt_match structure. It must not be marked const, because
it will be added to the chain of a linked list and hence needs to be modifiable. But we will
mark it __read_mostly, which is yet another of those magic annotation tags that will trigger
the linker to specially layout symbols, which actually helps optimizing cachelining(author?)
[ReadMostly].

static struct xt_match ipaddr_mt_reg __read_mostly = {

name is the name of the match that you define. XT_EXTENSION_MAXNAMELEN is currently 29,
so subtracting one for the trailing ’\0’ leaves 28 chars for the name of your match, which
should be enough. revision is an integer that can be used to denote a “version” or feature
set of a given match. For example, the xt_multiport match, which is used to efficiently match
up to 15 TCP or UDP ports at a time, supported only 15 source or 15 destination ports in
revision 0. Supporting 15 source and 15 destination required a change of the private structure,
so revision 1 had to be introduced.

Then comes family, which specifies the type of family this xt_match structure handles.
A “family” does not map to a specific layer in the OSI protocol stack as can be seen, but
rather for a type of processing. ip6_tables will only search the Xtables core for extensions with
NFPROTO_IPV6 or NFPROTO_UNSPEC; ip_tables only NFPROTO_IPV4 and NFPROTO_UNSPEC when
inserting a new rule. Possible values are shown in table 2.
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Constant Considered by Value for kernels < 2.6.28
NFPROTO_UNSPEC (all) none
NFPROTO_IPV6 ip6_tables PF_INET6
NFPROTO_IPV4 ip_tables PF_INET
NFPROTO_ARP arp_tables NF_ARP

NFPROTO_BRIDGE ebtables none

Table 2: Possible values for the “family” field

Both userspace and kernelspace must agree on the same <name, revision, address family,
size> 4-tuple for an xt_match to be successfully used.

.name = "ipaddr",

.revision = 0,

.family = NFPROTO_IPV6,

The table, hooks and proto fields can limit where the match may be used. If the field is
not provided, no table, hook or protocol restriction will be applied, respectively. There are
no Xtables matches we know of that are limited to a specific table, but the field is there
for completeness. hooks is seen sometimes, for example in xt_owner, which matches on the
socket sending the skb — information which is only available in the output path as of 2.6.25,
so xt_owner sets hooks. hooks will be covered in deeper detail in section 5.3 about Xtables
targets.

proto, as far as matches are concerned, is primarily used by IPv6 extension header matches
and layer-4 protocol (for example, SCTP, TCP, UDP, etc.) header matches. When you invoke
‘ip6tables -A INPUT -m sctp‘, the .proto field of xt_tcpudp is inspected; it has the value
IPPROTO_SCTP, which causes the module, and hence the entire rule, to only match on SCTP
traffic. You should not artificially limit a match to a certain protocol, either by use of proto
or by not interpreting anything else than a specific protocol — please provide code for all
protocols, if applicable and possible.

table and proto are single-value fields, only hooks is a bitmask. If you plan to allow a
match or target in more than one table — but still not all tables that could possibly exist —
or more than one protocol, you need to write an appropriate check in the checkentry function
(see section 2.6).

The next fields are callbacks that the framework will use. match is what is called when
a packet is passed to our module, checkentry and destroy are called on rule insertion and
removal, respectively. Since we do not have anything meaningful to do, we will just do a
printk/pr_info inside ipaddr_mt_check and ipaddr_mt_destroy in our sample module.

.match = ipaddr_mt,

.checkentry = ipaddr_mt_check,

.destroy = ipaddr_mt_destroy,

Not of less importance is the matchsize field which specifies the size of the private structure.
Note the details about alignment in section 4.4.

.matchsize = sizeof(struct xt_ipaddr_mtinfo),

.me = THIS_MODULE,
};
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The last line containing THIS_MODULE is used for the Linux kernel module infrastructure; among
other things, it serves for reference counting, so that the module is not unloaded while a rule
exists that references the module. Include <linux/module.h> for it.

Your kernel module’s init function needs to call xt_register_match with a pointer to the
struct. This function is called on module loading.

static int __init ipaddr_mt_init(void)
{

return xt_register_match(&ipaddr_mt_reg);
}

When unloading the module, the match needs to be unregistered again.

static void __exit ipaddr_mt_exit(void)
{

xt_unregister_match(&ipaddr_mt_reg);
}

__init and __exit are markers that cause the functions to be emitted into specific sections
in the resulting module (read: linker magic). It does not automatically mean that these are
the entry and exit functions. For that, we need the following two extra lines coming after the
functions:

module_init(ipaddr_mt_init);
module_exit(ipaddr_mt_exit);

You should not forget to add the standard module boilerplate, that is, author (you can have
multiple lines of them), description and license:

MODULE_AUTHOR("Me and <my@address.com>");
MODULE_DESCRIPTION("Xtables: Match source/destination address");
MODULE_LICENSE("GPL");

Reminding you, just in case you have already forgotten, make sure that the module has the
necessary module aliases required for automatic loading.

MODULE_ALIAS("ip6t_ipaddr");

2.4 Naming convention
It is advised to keep symbols (function and variable names) unique across the whole kernel.
This because if you had just name your match function “match”, which was historically done in
a lot of modules (probably due to copy & paste when new modules were developed), it becomes
hard to recognize whether it was module1’s match or module2’s match function in a potential
kernel stack trace during oops. You do not need to actually use totally-unique names for all
symbols, but for the parts that interface to Xtables, it is recommended. The standard naming
is the match name, an underscore, “mt” (ipaddr_mt in our example) and another word for the
symbol. You will get to see it in action in the example code as you read through this document.
Typically we use these:

• ipaddr_mt_reg – the structure (sort of an “object”) containing all the metadata such as
name and the function pointer table (“vtable”)
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• ipaddr_mt – the match function

• ipaddr_mt_check – function to check for validity of parameters in our struct

• ipaddr_mt_destroy – function to call when rule is deleted

• struct xt_ipaddr_mtinfo – structure for our own data

• ipaddr_mt6 and ipaddr_mt4, ipaddr_mt6_check and ipaddr_mt4_check, etc. – when
the IPv6 and IPv4 bits do not share the same entrypoint.

• struct xt_ipaddr_mtinfoN – structure for revision N

2.5 Point of decision – match function
The Linux networking stack is sprinkled with Netfilter hooks. Thus, when a packet is going
to be processed, the networking stack passes the packet to each hook. Of interest here is only
Xtables of course; the hooks NF_IP6_PRI_MANGLE, NF_IP6_PRI_FILTER, others, and their IPv4
counterparts, map to a table. When control is passed to the ip6t_do_table function, it will
iterate over each rule, which in turn iterates through each match that is used in a given rule.
When it is the time for your module to have the packet, it can finally do its job.

static bool ipaddr_mt(const struct sk_buff *skb,
struct xt_action_param *par)

{

The contents of the xt_action_param structure have been previously shown in section 2.2, now
here is what they are used for. par->in and par->out are the network devices through which
the packet came in or went out; they may be NULL in certain chains, see table 3. Interfaces are
rarely used in Xtables, only the logging targets seem to make use of it right now.

in out
BROUTING, PREROUTING and INPUT X —

FORWARD X X
OUTPUT and POSTROUTING — X

Table 3: Availability of interface variables

par->match points to the structure for the invoked match, which may be used to differentiate
between particular revisions of it, should you have decided to use the same function for different
revisions of a match.

through which the match function was invoked.
par->family (also since Linux 2.6.28) conveys the particular family (NFPROTO_*) context

the match was called in, which can be useful when par->match->family == NFPROTO_UNSPEC.
par->matchinfo is the data block copied from userspace, and here we map it. Note that

no casts are required between void * and any other (non-function) pointer type in C, so do
not attempt anything unwise!

const struct xt_ipaddr_mtinfo *info = par->matchinfo;

skb contains the packet we want to look at. You need to include <linux/skbuff.h> if you do
any skb operation or access the struct’s members. For more information about this powerful
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structure used everywhere in the Linux networking stack, I recommend the book “Understand-
ing Linux Network Internals”(author?) [LinuxNetInt]. While the latest edition of the book is
a few years back and maps to Linux 2.6.14, it is still a very helpful read. Section 4.1 in this
book also takes a look at skbs and related functions.

The ip_hdr function returns a pointer to the start of the IPv4 header.

const struct ipv6hdr *iph = ipv6_hdr(skb);

Here, we are just printing some of the variables passed to see what they look like. The macros
NIP6_FMT and NIP6 were once used to display an IPv6 address in readable format, and were
defined in <linux/kernel.h>.

pr_info(
"xt_ipaddr: IN=%s OUT=%s "
"SRC=" NIP6_FMT " DST=" NIP6_FMT " "
"IPSRC=" NIP6_FMT " IPDST=" NIP6_FMT "\n",
(par->in != NULL) ? par->in->name : "",
(par->out != NULL) ? par->out->name : "",
NIP6(iph->saddr), NIP6(iph->daddr),
NIP6(info->src), NIP6(info->dst));

For IPv4 addresses, use NIPQUAD_FMT and NIPQUAD, respectively. In kernels starting from
2.6.29, printing addresses changed when the NIP* macros were removed in favor of the new
format specifiers. When writing a module whilst making use of the Xtables-addons compat
layer, you can still use NIP6/NIPQUAD and the _FMT macros. Native 2.6.29+ code will however
look like this:

pr_info("SRC=%pI6 / %pI4\n", &ip6h->saddr, &ip4h->saddr);

If the XT_IPADDR_SRC flag has been set, we check whether the source address matches the one
specified in the rule. If it does not match, the whole rule will not match, so we can already
return false here. Note that the comparison of iph->saddr with info->src.in6 is XORed
with the presence (double exclamation mark) of the inversion flag XT_IPADDR_SRC_INV to flip
the result of the comparison to get the invert semantics. [!= would have also worked instead
of ^.]

if (info->flags & XT_IPADDR_SRC)
if ((ipv6_addr_cmp(&iph->saddr, &info->src.in6) != 0) ^

!!(info->flags & XT_IPADDR_SRC_INV)) {
pr_notice("src IP - no match\n");
return false;

}

For an explanation of the use of “!!”, see appendix B.1.
Here, we do the same, except that we look for the destination address if XT_IPADDR_DST

has been set.

if (info->flags & XT_IPADDR_DST)
if ((ipv6_addr_cmp(&iph->daddr, &info->dst.in6) != 0) ^

!!(info->flags & XT_IPADDR_DST_INV)) {
pr_notice("dst IP - no match\n");
return false;

}
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At the end of the function, we will return true, because we have excluded all non-matching
cases before(author?) [ElseHarmful].

return true;
}

If there is a problem that prohibits or makes it impossible to determine whether the packet
matched or not, e. g. memory allocation failure or a bogus packet, par->hotdrop should be set
to true and the function should return false. Example from xt_tcpudp:

/* Extract TCP options */
op = skb_header_pointer(skb, par->thoff + sizeof(struct tcphdr),

optlen, _opt);
if (op == NULL) {

par->hotdrop = true;
return false;

}

The par->thoff argument to our match function contains the offset into the packet where the
transport header for the protocol given in ipaddr_mt_reg.proto, in this case the TCP header,
begins. skb_header_pointer extracts data from the position given in its second argument,
which is relative to the skb->data pointer. For Ebtables modules, skb->data will point to the
layer-2 header, whereas for ip6, ip and arptables, it will be the layer-3 header.

2.6 Rule validation – checkentry function
checkentry is often used as a kernel-side sanity check of the data the user input, as you should
not rely on the iptables userspace program passing in proper information. It is also used to
trigger loading of any additional modules that might be required for the match to function
properly, such as layer-3 connection tracking, which is essential for connection-based matches
like xt_connlimit, xt_conntrack, and a few more. What’s more, this function may be used to
allocate extra memory that may be needed to store state — more on this in section 4.5. This
function is called when you try to add a rule, but it happens before the rule is actually inserted.

If you do not plan on loading or verifying anything, you can omit the function.

static int ipaddr_mt_check(const struct xt_mtchk_param *par)
{

const struct xt_ipaddr_mtinfo *info = par->matchinfo;

pr_info("Added a rule with -m ipaddr in the %s table; this rule is "
"reachable through hooks 0x%x\n",
par->table, par->hook_mask);

if (!(info->flags & (XT_IPADDR_SRC | XT_IPADDR_DST)) {
pr_info("not testing for anything\n");
return -EINVAL;

}

if (ntohl(info->src.ip6[0]) == 0x20010DB8) {
/* Disallow test network 2001:db8::/32 */
pr_info("I’m sorry, Dave. "
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"I’m afraid I can’t let you do that.\n");
return -EPERM;

}

return 0;
}

The checkentry function may also be used to limit the match to specific tables, hooks or
combinations thereof if the mechanisms provided by struct xt_match are not sufficient. More
on that in section 5.10.

checkentry is supposed to return an error code as shown. Often, -EINVAL is the most
meaningful, but since EINVAL is kind of overused in the kernel for whenever there is an invalid
option combination or similar, a helpful message should be added.

2.7 Rule destruction – destroy function
The destroy function is provided as a counterpart for modules which used checkentry as
means to load additional modules or allocating space. Of course, we would like to free that
space when a rule is removed, and drop additional modules reference count so they can be
unloaded if desired. Since our xt_ipaddr does not allocate anything or use extra modules, it
will just print out something for demonstration. This function may also be omitted.

static void ipaddr_mt_destroy(const struct xt_mtdtor *par)
{

const struct xt_ipaddr_mtinfo *info = par->matchinfo;
pr_info("Test for address " NIP6_FMT " removed\n",

NIP6(info->src.ip6));
}

IPv6 is emerging, and as already touched on by the previous subchapter(s), our sample ipaddr
module knows about it. After all, it is what is supposed to replace IPv4 in the future. Next
Header parsing requires a bit more code for IPv6, but since we are just comparing source and
destination address in the IPv6 header, our example currently remains small.

2.8 IPv4 support
If you still need this old protocol, fear not. Netfilter also handles this dusty 32-bit protocol
from three-decades-ago. If your module inherently does not support IPv4 because, for example,
it matches on an IPv6-specific property, you of course do not add match code or a struct
xt_match for IPv4.

static bool ipaddr_mt4(const struct sk_buff *skb,
const struct xt_action_param *par)

{
const struct xt_ipaddr_mtinfo *info = par->matchinfo;
const struct iphdr *iph = ip_hdr(skb);

if (info->flags & XT_IPADDR_SRC)
if ((iph->saddr != info->src.ip) ^

!!(info->flags & XT_IPADDR_SRC_INV))
return false;
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if (info->flags & XT_IPADDR_DST)
if ((iph->daddr != info->dst.ip) ^

!!(info->flags & XT_IPADDR_DST_INV))
return false;

return true;
}

You would then declare a new struct xt_match with match pointing to ipaddr_mt4.

static struct xt_match ipaddr_mt4_reg __read_mostly = {
.name = "ipaddr",
.revision = 0,
.family = NFPROTO_IPV4,
.match = ipaddr_mt4,
.matchsize = sizeof(struct xt_ipaddr_mtinfo),
.me = THIS_MODULE,

};

and call xt_register_match(&ipaddr_mt4_reg) next to the already existing registration call
for ipaddr_mt6_reg, of course, with proper error handling:

static int __init ipaddr_mt_reg(void)
{

int ret;

ret = xt_register_match(&ipaddr_mt6_reg);
if (ret < 0)

return ret;
ret = xt_register_match(&ipaddr_mt4_reg);
if (ret < 0) {

xt_unregister_match(&ipaddr_mt6_reg);
return ret;

}
return 0;

}

And similar for the exit function. As the number of match structures grow — and the possibility
to do revisions just increases the likelihood of that happening — this will accumulate to a great
amount of redundantly typed error code paths. There exists a much better way for registering
multiple matches at once, which is explained in section 4.2.

2.9 Building the module
To actually build our precious work, we need a Makefile and other bits to make ‘make‘ do the
right thing. There are a number of different approaches here, in some of which you can skip
the build logic largely and concentrate on the module.
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2.9.1 Using the Xtables-addons package

Place the modules’ files — xt_ipaddr.c and xt_ipaddr.h — into the extensions/ directory
and modify the Kbuild file to include xt_ipaddr.o in the object list and the mconfig file to
give build_ipaddr a value, like the rest of the extensions. Please read the INSTALL file on how
to correctly configure and compile Xtables-addons.

In the mbuild file in the top-level directory, you define whether or not to build a given
extension, much like the kernel’s .config:

build_ipaddr=m

Then you also need the actual Makefile logic, which is also modeled upon the kernel’s build
system. Add to the extensions/Kbuild file:

obj-${build_ipaddr} += xt_ipaddr.o

And to extensions/Mbuild:

obj-${build_ipaddr} += libxt_ipaddr.so

2.9.2 Standalone package

If you are writing your module in a out-of-tree standalone package, you can use a simple
boilerplate Makefile:

# -*- Makefile -*-
MODULES_DIR := /lib/modules/$(shell uname -r)
KERNEL_DIR := ${MODULES_DIR}/build

obj-m += xt_ipaddr.o

all:
make -C ${KERNEL_DIR} M=$$PWD;

modules:
make -C ${KERNEL_DIR} M=$$PWD $@;

modules_install:
make -C ${KERNEL_DIR} M=$$PWD $@;

clean:
make -C ${KERNEL_DIR} M=$$PWD $@;

Besides the Makefile, you need (of course) the source files and a kernel source tree. Calling
‘make‘ then is everything needed to build xt_ipaddr.ko. You may pass KERNEL_DIR=/path/
to/builddir to make in case you want to build against a kernel other than the one currently
running.

The drawback compared to using Xtables-addons is of course that you do not get the
pleasure to use the pre-existing glue code without doing some work yourself (such as copying
it, keeping it up-to-date, etc.).
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2.9.3 In-tree modifications to the kernel

The xt_ipaddr.c file should be put into net/netfilter/ and xt_ipaddr.h into include/
linux/netfilter/. Then you edit net/netfilter/Makefile and add a rule for your match
to be built:

obj-${CONFIG_NETFILTER_XT_MATCH_IPADDR} += xt_ipaddr.o

Finally, add the config option and a help text itself in net/netfilter/Kconfig. Where ex-
actly you place this block in the Kconfig file does not matter, but we like to keep the list
sorted, so ipaddr would currently find its place between the NETFILTER_XT_MATCH_HELPER and
NETFILTER_XT_MATCH_IPRANGE config options.

config NETFILTER_XT_MATCH_IPADDR
tristate ’"ipaddr" source/destination address match’
depends on NETFILTER_XTABLES
---help---
The xt_ipaddr module allows you to match on source and/or
destination address, and serves demonstration purposes only.

Please have a look at or Git(author?) [Git, GitJB], Quilt(author?) [QuiltFM, QuiltAG] or
StGit(author?) [StGit] if you intend on submitting patches for your new module.

2.10 Summary
In this second part, we covered the basics of the Xtables module infrastructure and how to reg-
ister our module with the framework by using a specific structure and functions. We discussed
how to match a specific situation according to our idea, and how to go about IPv6 support, as
well as a short section on how to get the module built.
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3 Userspace plugin
The purpose of an iptables extension is basically to interact with the user. It will handle the
arguments the user wants the kernel part to take into consideration.

3.1 Structural definition
struct xtables_match defines the vtable for one address family of a match extension. It is
available from <xtables.h>.

struct xtables_match {
const char *version;
const char *name;
uint8_t revision;
uint16_t family;

size_t size;
size_t userspacesize;

void (*help)(void);
void (*init)(struct xt_entry_match *match);
int (*parse)(int c, char **argv, int invert, unsigned int *flags,

const void *entry, struct xt_entry_match **match);
void (*final_check)(unsigned int flags);
void (*print)(const void *entry,

const struct xt_entry_match *match,
int numeric);

void (*save)(const void *entry,
const struct xt_entry_match *match);

const struct option *extra_opts;
};

3.2 Extension initialization
static struct xtables_match ipaddr_mt6_reg = {

.version = XTABLES_VERSION,

version is always initialized to XTABLES_VERSION. This is to avoid loading old modules in
/usr/libexec/xtables with a newer, potentially incompatible iptables version.

name specifies the name of the module (obviously). It has to match the name set in the kernel
module. Together with the next two fields, the <name, revision, address family> tuple is used to
uniquely lookup the corresponding kernel module. revision specifies that this xtables_match
is only to be used with the same-revision kernel-side Xtables match. family denotes what family
this match operates on, in this case IPv6 (NFPROTO_IPV6), or IPv4 (NFPROTO_IPV4). You can
also use NFPROTO_UNSPEC, which acts as a wildcard.

.name = "ipaddr",

.revision = 0,

.family = NFPROTO_IPV6,

size specifies the size of our private structure in total. userspacesize specifies the part
of the structure that is relevant to rule matching when replacing or deleting rules. It does
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not apply to index-based deletion such as ‘iptables -D INPUT 1‘, but for match/mask-based
deletion, as in ‘iptables -D INPUT -m rateest --rateest1 name1 --rateest2 name2 ...
-j ACCEPT‘. When such a command is issued, the binary representation of that rule is con-
structed, and if it matches the binary blob from the kernel, it will be deleted. However, the
est1 and est2 fields of struct xt_rateest_mtinfo are kernel-private fields and should be
exempted from comparison. This realized by specifying a userspacesize that is smaller than
size, using offsetof1. This is why kernel-side-specific fields also should be at the end of the
structure.

Usually, both size and userspacesize are the same, but there are exceptions like the
aforementioned xt_rateest where the kernel module keeps additional information for itself.
When userspacesize is less than size, it must not use XT_ALIGN(offsetof(...))), but
just offsetof(...).

.size = XT_ALIGN(sizeof(struct xt_ipaddr_mtinfo)),

.userspacesize = XT_ALIGN(sizeof(struct xt_ipaddr_mtinfo)),

help is called whenever a user enters ‘iptables -m module -h‘. parse is called when you
enter a new rule; its duty is to validate the arguments. print is invoked by ‘iptables -L‘ to
show previously inserted rules.

.help = ipaddr_mt_help,

.init = ipaddr_mt_init,

.parse = ipaddr_mt6_parse,

.final_check = ipaddr_mt_check,

.print = ipaddr_mt6_print,

.save = ipaddr_mt6_save,

.extra_opts = ipaddr_mt_opts,
};

It is possible to omit the init, final_check, print, save and extra_opts members (same as
explicitly initializing them to NULL). help and parse must be defined.

The reason we use ipaddr_mt6 sometimes and ipaddr_mt is because some functions and
structures can be shared between the IPv6 and the IPv4 code parts, as we will see later. What
exactly can be shared is dependent on the extension you are writing.

Each library must register to the running ip6tables (or iptables) program by calling xtables_-
register_match. The _init function is called when the module is loaded by iptables. For
more information about it, see dlopen(3). As a tiny implementation detail, note that _init is
actually defined as a macro for iptables, and the keyword will be replaced by appropriate logic
to wire it up with iptables, as we cannot strictly use _init, because the Glibc CRT (common
runtime) stubs that will be linked into shared libraries, already do.

void _init(void)
{

xtables_register_match(&ipaddr_mt_reg);
}

When iptables is built, this will expand to:

void __attribute__((constructor)) libxt_ipaddr_init(void)
1See libxt_rateest.c in the iptables source package for an example.
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so you may not use the name libxt_ipaddr_init for other functions, or you will get an
unfortunate compile error.

In case you use the Xtables-addons framework, just directly write

static void _init(void)

i. e. with the static keyword and without the extra prototype above it, because modules are
always compiled as shared library objects (.so) in Xtables-addons, so no symbols need to be
globally visible.

3.3 Dumping rules – save function
If we have a ruleset that we want to save, iptables provides the tool iptables-save which dumps
all your rules. It needs your extension’s help to interpret struct xt_ipaddr_mtinfo’s contents
and dump proper rules. The output that is to be produced must be options as can be passed
to iptables.

static void ipaddr_mt6_save(const void *entry,
const struct xt_entry_match *match)

{
const struct xt_ipaddr_mtinfo *info = (const void *)match->data;

We print out the source address if it is part of the rule.

if (info->flags & XT_IPADDR_SRC) {
if (info->flags & XT_IPADDR_SRC_INV)

printf("! ");
printf("--ipsrc %s ",

xtables_ip6addr_to_numeric(&info->src.in6));
}

Note that xtables_ip6addr_to_numeric uses a static buffer, so you may not call it more
than once before having the result printed out. It will convert a struct in6_addr to numeric
representation, i. e. 2001:db8::1337. Then, we also print out the destination address if it is
part of the rule.

if (info->flags & XT_IPADDR_DST) {
if (info->flags & XT_IPADDR_DST_INV)

printf("! ");
printf("--ipdst %s ",

xtables_ip6addr_to_numeric(&info->dst.in6));
}

}

Note that output from the save function shall always be numeric, that is, no IP addresses may
be transformed to hostnames!
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3.4 Status display – print function
In the same philosophy as the previous one, this function aims to print information about
the rule, but in a freeform fashion. It is called by ‘iptables -L‘, and you are free to output
whatever you want, and how you want.

static void ipaddr_mt6_print(const void *entry,
const struct xt_entry_match *match, int numeric)

{
const struct xt_ipaddr_mtinfo *info = (const void *)match->data;

if (info->flags & XT_IPADDR_SRC) {
printf("src IP ");
if (info->flags & XT_IPADDR_SRC_INV)

printf("! ");
if (numeric)
printf("%s ", numeric ?

xtables_ip6addr_to_numeric(&info->src.in6) :
xtables_ip6addr_to_anyname(&info->src.in6));

}

if (info->flags & XT_IPADDR_DST) {
printf("dst IP ");
if (info->flags & XT_IPADDR_DST_INV)

printf("! ");
printf("%s ", numeric ?

xtables_ipaddr_to_numeric(&info->dst.in));
xtables_ipaddr_to_anyname(&info->dst.in));

}
}

Here, we use xtables_ip6addr_to_anyname in the !numeric case, to print a hostname when
possible. The numeric case is triggered by using ‘ip6tables -S‘, ‘ip6tables-save‘ or passing
the -n argument to ip6tables (‘ip6tables -nL‘), which instructs iptables to not do DNS or
other lookups that could possibly block.

3.5 Option parsing – parse function
This is the most important function because here, we verify if arguments are used correctly and
set information we will share with the kernel part. It is called each time an option is found, so
if the user provides two options, it will be called twice with the argument code provided in the
variable c. The argument code for a specific option is set in the option table (see below).

static int ipaddr_mt6_parse(int c, char **argv, int invert,
unsigned int *flags, const void *entry,
struct xt_entry_match **match)

{

The match pointer is passed to a couple of functions so we can work on the same data structure.
Once the rule is loaded, the data that is pointed to will be copied to kernel-space. This way,
the kernel module knows what the user asks to analyze (and that is the point, is it not?).
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struct xt_ipaddr_mtinfo *info = (void *)(*match)->data;
struct in6_addr *addrs, mask;
unsigned int naddrs;

The cast is needed here since data is of type char *, rather than void *. Each command-line
option, like --srcip, is assigned an integer value, stored in c here, to allow for specific actions
to be done according to the inputted arguments. We will see later in this text how we map
arguments to values.

switch (c) {

First, we check if the argument has been used more than once. If it appears to be the case,
we call xtables_error, which will print the supplied error message and exit the program
immediately with the status flag PARAMETER_PROBLEM. Else, we set flags and info->flags to
the XT_IPADDR_SRC value defined in our header’s file, to tell the kernel module that we want
to do something. We will see our header file later.

Although both flags and info->flags seem to have the same purpose, they really do not.
The scope of flags is only this function (and the final check function), while info->flags is
a field part of our structure which will be shared with the kernel.

case ’1’: /* --ipsrc */
if (*flags & XT_IPADDR_SRC)

xtables_error(PARAMETER_PROBLEM, "xt_ipaddr: "
"Only use \"--ipsrc\" once!");

*flags |= XT_IPADDR_SRC;
info->flags |= XT_IPADDR_SRC;

We verify whether the invert flag, ’!’, has been used on the command line (e. g. ‘iptables -m
ipaddr ! --ipsrc 192.168.0.137‘) and then set appropriate information in info->flags.
There are a number of functions that take an IPv6/v4 address or hostname and turn it into a
128/32-bit entity. Here, we will use xtables_ip6parse_any, which can take either a hostname
or IP address, and will write the result to addr and mask. The addrs argument is used to store
the addresses a host resolution might yield.

if (invert)
info->flags |= XT_IPADDR_SRC_INV;

xtables_ip6parse_any(optarg, &addrs, &mask, &naddrs);
if (naddrs != 1)

xtables_error(PARAMETER_PROBLEM,
"%s does not resolves to exactly "
"one address", optarg);

/* Copy the single address */
memcpy(&info->src.in6, addrs, sizeof(*addrs));
return true;

For demonstrational purposes, we will use xtables_numeric_to_ip6addr instead for the des-
tination address. It transforms exactly one IPv6 address into a 128-bit entity:

case ’2’: /* --ipdst */
if (*flags & XT_IPADDR_DST)

xtables_error(PARAMETER_PROBLEM, "xt_ipaddr: "
"Only use \"--ipdst\" once!");
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*flags |= XT_IPADDR_DST;
info->flags |= XT_IPADDR_DST;
if (invert)

info->flags |= XT_IPADDR_DST_INV;
addrs = xtables_numeric_to_ip6addr(optarg);
if (addrs == NULL)

xtables_error(PARAMETER_PROBLEM,
"Parse error at %s\n", optarg);

memcpy(&info->dst.in6, addrs, sizeof(*addrs));
return true;

}
return false;

}

Every time an option was recognized, the parse function should return true, and false other-
wise. This is because the parse function is also passed options that potentially belong to other
modules, and if our function returns false, other parse functions are probed whether they
recognize the option. In essence, every time you load a new match with iptables’s -m name
option, the option table for that specific match is added to the top of the option table search
list.

3.6 Option validation – check function
This function is sort of a last chance for sanity checks. It is called when the user enters a new
rule, after argument parsing is done and flags is filled with whatever values you chose to assign
to it in your parse function.

static void ipaddr_mt_check(unsigned int flags)
{

if (flags == 0)
xtables_error(PARAMETER_PROBLEM, "xt_ipaddr: You need to "

"specify at least \"--ipsrc\" or \"--ipdst\".");
}

It is generally used to ensure that a minimum set of options or flags have been specified. Flags
that conflict with one another, including an option with itself — in other words, specifying an
option twice — is usually handled at the earliest point possible, in the parse function. But
there are option combinations for which only the final check function makes sense to test them,
as parse cannot “look forward”.

3.7 Options structure
Earlier, we discussed that every option is mapped to a single argument code value. The struct
option is the way to achieve it. For more information about this structure, I strongly suggest
you read getopt(3). You need to include <getopt.h> for it.

static const struct option ipaddr_mt_opts[] = {
{.name = "ipsrc", .has_arg = true, .val = ’1’},
{.name = "ipdst", .has_arg = true, .val = ’2’},
{NULL},

};
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3.8 Rule initialization – init function
The init function can be used to populate our xt_ipaddr_mtinfo structure with defaults
before parse is called. If you do not need it, just omit initialization of the init field in our
ipaddr_mt_reg structure (like it was done above).

static void ipaddr_mt_init(struct xt_entry_match *match)
{

struct xt_ipaddr_mtinfo *info = (void *)match->data;

inet_pton(AF_INET6, "2001:db8::1337", &info->dst.in6);
}

In this example, the default destination addresses is set to 2001:db8::1337, and unless the user
overrides it with --ipdst, this address will be used. (Actually, the destination address will not
be tested in the xt_ipaddr kernel module unless --ipdst is given, so this example is sort of a
no-op.) The initialization is often not needed because the memory pointed to by match->data
is already zeroed so that iptables extensions do not need to take care of clearing match->data
before being able to use it in the parse function.

3.9 Short usage text – help function
This function is called by ‘iptables -m match_name -h‘. It should give an overview of the
available options and a very brief short description. Everything that is longer than one line
should be put into the manpage (see section 3.11).

static void ipaddr_mt_help(void)
{

printf(
"ipaddr match options:\n"
"[!] --ipsrc addr Match source address of packet\n"
"[!] --ipdst addr Match destination address of packet\n"
);
}

3.10 IPv4 support
Similarly to the kernel module, you might want to add IPv4 support in the iptables extension.
For that, we need a separate struct xtables_match.

static struct xtables_match ipaddr_mt4_reg = {
.version = XTABLES_VERSION,
.name = "ipaddr",
.revision = 0,
.family = NFPROTO_IPV4,
.size = XT_ALIGN(sizeof(struct xt_ipaddr_mtinfo)),
.userspacesize = XT_ALIGN(sizeof(struct xt_ipaddr_mtinfo)),
.help = ipaddr_mt_help,
.parse = ipaddr_mt4_parse,
.final_check = ipaddr_mt_check,
.save = ipaddr_mt4_save,
.print = ipaddr_mt4_print,
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.opts = ipaddr_mt_opts,
};

As mentioned earlier, a few functions can be shared, such as ipaddr_mt_help or ipaddr_-
mt_check, because they are independent of the address family used. For the others, we need
IPv4-specific parse, save and print functions that handle IPv4 addresses:

static int ipaddr_mt4_parse(int c, char **argv, int invert,
unsigned int *flags, const void *entry,
struct xt_entry_match **match)

{
struct xt_ipaddr_mtinfo *info = (void *)(*match)->data;
struct in_addr *addrs;

switch (c) {
case ’1’: /* --ipsrc */

if (*flags & XT_IPADDR_SRC)
xtables_error(PARAMETER_PROBLEM, "xt_ipaddr: "

"Only use \"--ipsrc\" once!");
*flags |= XT_IPADDR_SRC;
info->flags |= XT_IPADDR_SRC;
if (invert)

info->flags |= XT_IPADDR_SRC_INV;
addrs = xtables_numeric_to_ipaddr(optarg);
if (addrs == NULL)

xtables_error(PARAMETER_PROBLEM, "xt_ipaddr: "
"Parse error at %s", optarg);

memcpy(&info->src.in, addrs, sizeof(*addr));
return true;

}
return false;

}

I have left out the case ’2’, you can surely add it yourself (it is in the libxt_ipaddr.c file
in the Xtables-addons git repository anyway). The only important change here is that we
use xtables_numeric_to_ipaddr, and the appropriate in_addr structures this function takes
(->src.in, ->dst.in). You should also be able to write the save and print functions; all that is
needed is xtables_ipaddr_to_numeric and xtables_ipaddr_to_anyname, respectively. Add
registering the ipaddr_mt4_reg structure to _init, and you are done:

static void _init(void)
{

xtables_register_match(&ipaddr_mt6_reg);
xtables_register_match(&ipaddr_mt4_reg);

}

3.11 Documentation
The help function should only give a really short overview of the available options. Some
iptables extensions already have so many options — yet the minimum amount of necessary
help text — that it fills a screenful. Please take the time to write anything else that you want
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to make the user aware of into a separate manpage file. When iptables is built, the manpage
files are merged into one, to complete ip6tables.8 and iptables.8. The build process will create
a subsection for the module, so we do not need to. The man text could be:

The ipaddr module matches on source and/or destination IP address.
.TP
[\fB!\fP] \fB--ipsrc\fP \fIaddr \fP
Match packets that have \fIaddr \fP as source address.
.TP
[\fB!\fP] \fB--ipdst\fP \fIaddr \fP
Match packets that have \fIaddr \fP as destination address.
.PP
The ipaddr module serves only as a demonstration. It is equivalent to
the iptables \fB-s\fP and \fB-d\fP options, but ipaddr does not support
masks.

Granted, our module is simple, and so is the manpage. (It also serves as an introduction to
write nroff markup.) When you build iptables and look at the completed manpage afterwards,
using ‘man -l iptables.8‘ perhaps or a viewer of your choice, you can see that \fB is for
bold, \fI for italic and \fP for normal2. .TP will do an indentation appropriate for option and
description, and .PP will return to the default paragraph indentation.

3.12 Building the extension
3.12.1 Using the Xtables-addons package

Place the modules’ files — xt_ipaddr.c and xt_ipaddr.h — into the extensions/ directory
and modify the Kbuild file to include xt_ipaddr.o in the object list and the mconfig file to
give build_ipaddr a value, like the rest of the extensions. Please read the INSTALL file on how
to correctly configure and compile xtables-addons.

Place the extension module libxt_ipaddr.c into the extensions/ directory and modify
the Mbuild file to include libxt_ipaddr.so in the object list and the mconfig file to give
build_ipaddr a value, if you have not done so yet.

mconfig:
build_ipaddr=m

extensions/Mbuild:
obj-${build_ipaddr} += libxt_ipaddr.so

Please read the INSTALL file on how to correctly configure and compile xtables-addons.
To make use of the module without copying it to the xtables module directory, you will

have to use something like:

XTABLES_LIBDIR=$PWD:/usr/libexec/xtables iptables -A INPUT -m ipaddr ...;

when you are inside the extensions directory. The XTABLES_LIBDIR environment variable, if
set, instructs iptables to search for extensions in the given directories. You want to make sure
the original directory — /usr/libexec/xtables here, but it might be different on your system
or if you had just previously built iptables in your own home directory.

2It actually means “previous” and acts like </b> or </i> does in HTML for a preceding <b> and <i>,
respectively.
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3.12.2 Standalone package

To compile the iptables extension, all you need is the development header files from iptables
(usually in a package called iptables-devel) and some means to turn libxt_ipaddr.c into a
shared library object, libxt_ipaddr.so. You can use a Makefile such as:

CFLAGS = -O2 -Wall
lib%.so: lib%.o

gcc -shared -fPIC -o $@ $^;
lib%.o: lib%.c

gcc ${CFLAGS} -D_INIT=lib$*_init -fPIC -c -o $@ $<;

and then call ‘make libxt_ipaddr.so‘, or wire up more Makefile logic to automatically build
the targets.

3.12.3 In-tree modifications to the iptables package

The filename for the extension source code should be libxt_ipaddr.c and be put into the
extensions/ directory. There is no need to edit a Makefile, as it will automatically glob up
all files that match libxt_*.c. Now build iptables. To enable debugging, you can override the
default CFLAGS with the debug flag. -ggdb3 includes lots of debug, in the preferred format and
with GDB extensions (= all that you could ever need). It is also highly recommended to pass
in -O0 to turn off optimization (an “O” followed by a zero) and therefore instruction reordering,
otherwise gdb will jump around source lines, making debugging hard.

./configure CFLAGS="-ggdb3 -O0";

iptables has recently moved to autotools, so uses configure. It also does not require a kernel
source tree (anymore). Please read the INSTALL file to find out more!

To test your extension without having to install iptables to a system location, in other words,
to run it from the build directory, set the --with-xtlibdir option:

./configure --with-xtlibdir="$PWD/extensions";

then you can test ipaddr:

./iptables -m ipaddr -h;

./iptables -A INPUT -m ipaddr --ipsrc 192.0.2.137;

./ip6tables -A INPUT -m ipaddr --ipsrc 2001:db8::1302;

To see if it is working, check either the printk messages that accumulated in the kernel log, or
use ‘iptables -vL‘ to watch the counters increasing. Make sure that either xt_ipaddr.ko can
be loaded by modprobe or is already loaded.

3.13 Summary
In this part, we discussed the purpose of the iptables extension module. We covered the internals
of each function and how the main structure xt_ipaddr_mtinfo is used to keep information
that will be copied to the kernel side for further consideration. We also looked at the iptables
structure and how to register our new extension.
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4 Tricks and traps
4.1 The packet buffer
struct sk_buff is an essential structure throughout networking — it carries your data; data
to match on, or to modify.

The life of an skb begins when the kernel, specifically a network driver, reads a packet from
the network card’s buffer into RAM3. At this point, all you essentially have is a pointer to
said buffer in skb->data, and its length in skb->len. skb->data is actually a pointer that
will move as the packet is passed on to the upper layers. In case of an Ethernet driver,
the driver will call eth_type_trans, which will reset the MAC header pointer by calling
skb_reset_mac_header on the skb4. The function does no more than copy (the value of)
skb->data to skb->mac_header (implementation might vary). eth_type_trans will then
advance skb->data by the size of the Ethernet header and decrease skb->len by the same
amount using the skb_pull function, so that skb->data will be pointing to the start of the
layer-3 header and skb->len contains the remaining length. At this point it is guaranteed that
the layer-2 header is complete and that the memory block pointed to by the pointer that is
returned by skb_mac_header is accessible for up to skb->mac_len bytes. Afterwards, the skb
is handed to the generic receive routine, netif_receive_skb or any of thelikes.

netif_receive_skb resets the network and transport header pointers, using skb_reset_-
network_header and skb_reset_transport_header, respectively. Packets will now5 be sent
to ingress shaping, Ebtables if a bridge device was involved, macvlan devices, and finally the
layer-3 protocol handler6. As packets have not yet been processed by layer 4 yet, you cannot
rely on the skb_transport_header function to return a meaningful value. For IPv4 match
extensions, you can use struct xt_action_param->thoff that ip_tables/xt_ip filled in. For
IPv6 match extensions, this field will only be filled when the rule contains a protocol specified
with the ip6tables -p flag, e. g. “-p tcp”. In all other cases, ip_hdrlen or ipv6_skip_exthdr
has to be called manually. The reason Netfilter/Xtables does not set the transport header
pointer in the skb or always provide the transport header offset is likely to be due to performance
considerations.

The layer-3 header is validated by the corresponding layer-3 protocol handler so that you
can always safely use ipv6_hdr in an extension that is registered for the NFPROTO_IPV6 fam-
ily, and ip_hdr for NFPROTO_IPV4, respectively. Because packets are passed to Ebtables first
before they go to any layer-3 handlers, NFPROTO_BRIDGE extensions cannot use the ip_hdr
and/or ipv6_hdr functions directly, but must use the safe boundary-checking function skb_-
header_pointer to obtain any data. NFPROTO_UNSPEC extensions generally fall under the
same rule, because they are valid for all families/protocols, however, you can examine struct
xt_action_param->family and check which Xtables family invoked the match/target function.
If it is NFPROTO_IPV4/NFPROTO_IPV6 you can use ip_hdr/ipv6_hdr, too.

In the output path, things are done in reverse. An skb of appropriate size is allocated
and filled with your data. skb->data as such will point to the data that is queued for be-
ing sent out, and skb->len will contain its length. The TCP send function will then call
skb_push to make room for the TCP header in front of skb->data. It does so by decreas-
ing skb->data and increasing skb->len. and calling skb_reset_transport_header, so that
skb->transport_header will point to what skb->data currently points to. This is repeated
for all the lower layers; once it is the IP layer’s turn, skb_push is used again to stack the layer-3
header onto it and to then reset the network header to the data pointer, etc. Note that the

3For an example, see drivers/net/niu.c, function niu_process_rx_pkt.
4See net/ethernet/eth.c, function eth_type_trans.
5See net/core/dev.c, function netif_receive_skb.
6See net/ipv6/ip6_input.c, function ipv6_rcv.
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transport header pointer is set by the time Xtables is called in the output path, so you may
take this shortcut if useful.

4.2 Registering multiple structures at once
As we have seen earlier in section 2.8, trying to register multiple structures at once can become
a tedious job with regard to the error path. Xtables provides four convenient functions to
(un)register arrays of matches and targets. When applied to our code, the ipaddr_mt_reg
structure and init and exit functions now look like this:

static struct xt_match ipaddr_mt_reg[] __read_mostly = {
{

.name = "ipaddr",

.revision = 0,

.family = NFPROTO_IPV6,

.match = ipaddr_mt6,

.matchsize = sizeof(struct xt_ipaddr_mtinfo),

.me = THIS_MODULE,
},
{

.name = "ipaddr",

.revision = 0,

.family = NFPROTO_IPV4,

.match = ipaddr_mt4,

.matchsize = sizeof(struct xt_ipaddr_mtinfo),

.me = THIS_MODULE,
},

};

static int __init ipaddr_mt_init(void)
{

return xt_register_matches(ipaddr_mt_reg,
ARRAY_SIZE(ipaddr_mt_reg));

}

static void __exit ipaddr_mt_exit(void)
{

xt_unregister_matches(ipaddr_mt_reg, ARRAY_SIZE(ipaddr_mt_reg));
}

4.3 Using connection tracking modules
Sometimes you want to operate on connections rather than packets. For that to be successful,
packets must actually be inspected by the connection tracking code — essentially making
Netfilter stateful. Xtables extensions that require connection tracking will try to load it as
needed. One way this can happen is due to symbol dependencies, i. e. a named function or
variable is needed. All of the IPv4 modules that do stateful NAT will generally make use of
the nf_nat_setup_info symbol from nf_conntrack.ko. The dependencies between kernel
modules are computed at link time, when the module file is created. modprobe adheres to
the “depends-on” names listed in a compiled kernel module and loads the dependencies first,
for example nf_conntrack.ko before xt_conntrack.ko. Such dependencies are essential; the
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xt_conntrack code just cannot run without the nf_ct_l3proto_try_module_get symbol, so a
failure to load nf_conntrack.ko results in a failure to load xt_conntrack.ko. If using only
insmod, you need to load the dependencies in the right order yourself.

Then there are run-time dependencies. It does not make much sense to load IPv4 connection
tracking if you never use IPv4, so it is preferable to not load it when not needed. But once
required, it will be requested by the kernel, which in turn calls the modprobe userspace binary
itself. Run-time dependencies are allowed to fail to resolve, and code using such deps either
goes to try something else on failure, or will abort gracefully.

static int conntrack_mt_check(const struct xt_mtchk_param *par)
{

return nf_ct_l3proto_try_module_get(par->family);
}

This is the very quick way how to do it. Once a rule that uses the conntrack match is inserted,
it will load the appropriate layer-3 connection tracking module using these means, because
without, it will not be possible to get the connection structure (struct nf_conn) for a partic-
ular packet in the main match function — the nf_ct_get function that is used to obtain the
associated connection for a packet just returns NULL and the whole match never matches.

Connection tracking is split into multiple modules and categories. First of all, we have the
core, nf_conntrack, which actually includes all the layer-4 trackers. Then there are currently two
layer-3 trackers, nf_conntrack_ipv4 and nf_conntrack_ipv6. Lastly, there are layer-5 trackers,
such as nf_conntrack_irc.

nf_ct_l3proto_module_try_get tries to load the module appropriate for the nfproto used,
the latter of which actually depends on whether you tried to insert an IPv4 ip_tables rule or an
IPv6 ip6_tables rule. The function will also increase the reference count of the layer-3 protocol
module so that it cannot be removed using rmmod while the ip*_tables rule is in place. Only
after all rules that depend on connection tracking (ct) have been removed, the ct module may
be removed too. It is therefore important to drop the reference count once a rule is removed:

static void conntrack_mt_destroy(const struct xt_mtdtor *par)
{

nf_ct_l3proto_module_put(par->family);
}

The following lsmod excerpt indicates that connection tracking is in use. I have two rules that
use the conntrack match, so that accounts for two references to xt_conntrack and two references
to nf_conntrack_ipv4. The other two references to nf_conntrack_ipv4 come from iptable_nat7
and nf_nat8.

Module Used by
iptable_nat 1
nf_nat 3 ipt_REDIRECT,ipt_MASQUERADE,iptable_nat
xt_conntrack 2
nf_conntrack_ipv4 4 iptable_nat
nf_conntrack 5 ipt_MASQUERADE, iptable_nat, nf_nat,

xt_conntrack, nf_conntrack_ipv4
7It is listed after all — has a symbol dependency.
8It seems to irregularly grab nf_conntrack_ipv4 however.
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4.4 Alignment of extension data
The kernel as well as userspace can run in various execution environments and combinations.
You can have a 32-bit kernel with a 32-bit userspace, a 64-bit kernel with a 64-bit userspace and
a 64-bit kernel with a 32-bit userspace. For all these cases, data needs to be interchangeable.
When a rule is transferred from or to the kernel, it is serialized into a contiguous binary stream.
The structures are sent as they appear in memory, so that the meaning of the binary blob is
actually dependent on the remote side’s interpretation. It is therefore important that both
userspace and kernel use the same struct definitions on the blob, and actually even a definition
that has the same binary representation in both worlds. Types like long can have different sizes
in different environments, hence the use of fixed types like __u32 is mandatory. Furthermore,
environments have different alignment requirements, which means there is variadic amount of
padding in structs for types.

The Xtables1 “communication protocol” requires that for all modes in a platform group,
the struct must look the same to ensure operability.

To do so, all affected members must be tagged with __attribute__((aligned(8))). To
facilitate this, aligned_u64 is a shorthand macro for __u64 __attribute__((aligned(8)))
(similarly for aligned_le64 and aligned_be64):

struct foo {
__u8 id;
aligned_u64 count;
__u32 bar;

};

The serialized bytestream consists of concatenations of various structures: struct xt_entry_-
match, struct ip6t_ip6, followed by a group for each match consisting of struct ip6t_entry
and the private match structure. Each of these structs is supposed to be 8-aligned, so they
need to be padded where necessary. To this end, the XT_ALIGN macro should be used which
rounds up the value passed in up to the next boundary.

.matchsize = XT_ALIGN(sizeof(struct foo)),

4.5 Attaching kernel-specific data
Generally, the shared structure, xt_ipaddr_mtinfo in our case, only contains the necessary
parameters needed to drive the match. However, there are times when the kernel module itself
needs to do bookkeeping. xt_quota for example keeps track of the number of bytes that passed
the match, on a per-match basis. To achieve this, it adds a few extra fields to the structure
(<linux/netfilter/xt_quota.h>):

struct xt_quota_mtinfo {
__u32 flags;
aligned_u64 quota;

/* Used internally by the kernel */
struct xt_quota_mtinfo *master __attribute__((aligned(8)));

};

The first kernel-only variable shall be aligned to the 8 (defined by our “protocol”). To do so,
you use the aligned attribute as shown.
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When the kernel-private data gets too big, you can use an indirection instead, and allo-
cate state when the rule is inserted (and free when it is deleted). Consider this hypothetical
xt_bigipaddr match that records the timestamps of the eight most recent processed packets9:

struct xt_bigipaddr_state {
__u32 seen[8];

};

struct xt_bigipaddr_mtinfo {
__u16 match_flags, invert_flags;

/* Used internally by the kernel */
struct xt_bigipaddr_state *state __attribute__((aligned(8)));

};

static int xt_bigipaddr_check(const struct xt_mtchk_param *par)
{

struct xt_bigipaddr_mtinfo *info = par->matchinfo;

info->state = kmalloc(sizeof(*info->state), GFP_KERNEL);
if (info->state == NULL)

return -ENOMEM;
return 0;

}

static void xt_bigipaddr_destroy(const struct xt_mtdtor_param *par)
{

struct xt_bigipaddr_mtinfo *info = par->matchinfo;
kfree(info->state);

}

Because the kernel data is internal and can change, it should not be used for comparing rule
equality in userspace. The userspacesize field in the iptables userspace module must be set to
the actual portion that is the “key” (if we were to use SQL terminology). With the appropriate
offsetof, only the first two members are compared, which is what we want.

struct xtables_match foo = {
.userspacesize = offsetof(struct xt_bigipaddr_mtinfo, state);

};

Now xt_quota, which served as an example too, is a bit of a more special case, as the quota
member is not only in the private data, but also directly in struct xt_quota_mtinfo. This is
because the userspace module wants to print the when the user runs ‘iptables -L‘ or similar.
If the field was hidden behind a pointer, userspace could not access it, because kernel pointers
are invalid in userspace — and it is only possible to do so-called “shallow copies”10. With this
hack come the issues of updating values on SMP.

9We could have also directly written union nf_inet_addr *seen, but only the clever C programmers should
think about that.

10Compare with “deep copies”, where pointers are followed.

32



4.6 SMP problems
You might have noticed the ominous master field in the struct xt_quota_mtinfo. It has to
do with the way Xtables stores rulesets in memory. After the check function has run (success-
fully), Xtables will duplicate the entire rule (including struct xt_quota_mtinfo) for NUMA
optimization reasons(author?) [QuotaOnSMP]. This obviously creates a difficult decision:
which struct xt_quota_mtinfo to update?

In the check function, a separate memory area is allocated which will hold the quota value
and which is decoupled from struct xt_quota_info.

struct xt_quota_info *q = par->matchinfo;
q->master = kmalloc(sizeof(*q->master), GFP_KERNEL);

Now when the matchinfo is duplicated, the duplicates’ addresses may change, but the info->master
member remains unchanged in all copies. It is then easy to just update the master’s counters
from all CPU cores:

struct xt_quota_mtinfo *q = par->matchinfo;
q->master->quota -= skb->len;

This alone does not solve the problem — mentioned in the previous reference — that Xtables
will copy the wrong struct to userspace (e. g. for ‘iptables -S‘). The best approximation for
this is to copy the shared quota value to the per-cpu variable everything the match function is
called.

/* Copy quota back to matchinfo so that iptables can display it */
q->quota = q->priv->quota;

To get at the real value that is currently held in memory at q->priv->quota, other mechanisms
need to be used. The xt_quota2 module from Xtables-addons for example exports the exact
quota through procfs11.

4.7 Deferred rule deletion on table replacement
When tables are replaced, the new rules are loaded into the kernel first before the old ones
are removed. This also means that the checkentry function is called on the new rule before
destroy is on the old one. This is important to know when information is shared between two
rules, for example lists of IP addresses in xt_recent or geoip lists in xt_geoip. When an existing
rule is changed with iptables-restore, the already populated address list is not cleared/changed
since the reference count never dropped to zero.

Calling iptables manually — this will do two table replacements — may clear the address
list, but only if there was exactly one reference to “foo” in all tables:

iptables -D ... -m recent --name foo;
# Deletion of state only happens when refcount drops to zero
iptables -A ... -m recent --name foo;

11This was also done to make the quota settable while the rule is active.
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4.8 A bit of coding style
Do not needlessy define your own incarnation of a debug macro. Instead, use the existing
pr_devel which is enabled once DEBUG is enabled.

/* Avoid this */
#if 1
# define DEBUGP printk
#else
# define DEBUGP(format, args...)
#endif
DEBUGP("Hello World\n");
/* Use this */
#if 1
# define DEBUG 1
#endif
pr_devel("Hello World\n");

“#if 1” may also be replaced with “#ifdef CONFIG_SOME_OPTION”, in case a Kconfig option
is used to disable or enable debug info.
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5 Target extensions
Targets can be really versatile. Common categories and examples are:

• mangling the packet payload – DSCP, TCPMSS, HL/TTL

• setting up NAT mappings – MASQUERADE, NETMAP, REDIRECT

• replying to packets (original packet is not modified) – REJECT

• changing packet “metadata”, i. e. skb/ct parameters – CLASSIFY, CONNMARK, MARK,
NOTRACK, TRACE

• changing actual packet data: xt_TCPOPTSTRIP

• just watching packets, e. g. for statistical or analytical purposes (most often, matches are
used instead) – LOG/NFLOG, RATEEST

• moving the packet to userspace – NFLOG, NFQUEUE

• other actions – SYSRQ

A few snippets from existing target modules will be explained in this chapter to demonstrate
how they interact with Xtables.

Focus is on the xt_ECHO sample target for explanation of the skeletal structure. xt_ECHO
which will return all bytes that have been written to a port — in effect, this is the “echo”
protocol as defined in (author?) [RFC862]. It will be limited to UDP, because implementing
a TCP engine is a somewhat bigger task and would extend beyond the scope of this document.

5.1 Naming convention
Just like for matches (see section 2.4), there is also a convention for targets. All it takes is
replacing the _mt part by _tg. While targets’ names are still upper-case, symbols will remain
lower-case.

• echo_tg_reg – structure/object containing target metadata and vtable

• echo_tg (or echo_tg4, echo_tg6 when it uses distinct functions) – the target (“action”)
function

• echo_tg_check – function to check for validity of parameters in our struct

• echo_tg_destroy – function when rule is deleted

• struct xt_echo_tginfo and struct xt_echo_tginfoN – structure for our own data
(for revision N )

5.2 Structural definition
This is the xt_target structure, excluding internal fields. It is also defined in <linux/
netfilter/x_tables.h>.
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struct xt_action_param {
const struct xt_target *target;
const void *targinfo;
const struct net_device *in, *out;
unsigned int hooknum;
uint8_t family;

};

struct xt_tgchk_param {
const char *table;
const void *entryinfo;
const struct xt_target *target;
void *targinfo;
unsigned int hook_mask;
uint8_t family;

};

struct xt_tgdtor_param {
const struct xt_target *target;
void *targinfo;
uint8_t family;

};

struct xt_target {
const char name[XT_EXTENSION_MAXNAMELEN];
uint8_t revision;
unsigned short family;
const char *table;
unsigned int hooks;
unsigned short proto;

unsigned int targetsize;
unsigned int (*target)(struct sk_buff *skb,

const struct xt_action_param *par);
int (*checkentry)(const struct xt_tgchk_param *par);
void (*destroy)(const struct xt_tgdtor_param *par);

struct module *me;
};

Xtables-addons uses a slightly different target function signature to cope with kernels before
2.6.24, so if you plan on writing your module with the help of the Xtables-addons glue code,
do not be surprised of extra compiler warnings if copying code verbatim. Its specific signature
there is:

unsigned int (*target)(struct sk_buff **pskb,
const struct xt_action_param *par);

5.3 Module initialization
The structure looks quite the same as matches do (see section 2.3), so the initialization is
straightforward:
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static struct xt_target echo_tg_reg __read_mostly = {
.name = "ECHO",
.revision = 0,
.family = NFPROTO_IPV6,
.proto = IPPROTO_UDP,

hooks is a bitmask and may contain zero or more of the following flags:
• 1 <�< NF_INET_PRE_ROUTING

• 1 <�< NF_INET_INPUT

• 1 <�< NF_INET_FORWARD

• 1 <�< NF_INET_OUTPUT

• 1 <�< NF_INET_POST_ROUTING

Kernels before 2.6.25(-rc1) used NF_IP_ and NF_IP6_ prefixes, but because the values are the
same, they have been collapsed into NF_INET_. Note that arptables and ebtables use their own
hook names and values. If hooks is not set, it is initialized to 0 by default, which means that
this target can be used in all chains.

The target shall further only be usable from INPUT, FORWARD and OUTPUT, although
this is already guaranteed by restricting it to the filter table, which has only these three chains.
It is therefore optional, but shown here.

.hooks = (1 <�< NF_INET_LOCAL_IN) |
(1 <�< NF_INET_FOWARD) |
(1 <�< NF_INET_LOCAL_OUT),

.target = echo_tg6,

.me = THIS_MODULE,
};

An implicit targetsize of zero is used here, because we decided not to use any options right
now. Hence there is also no private data structure and no header file to define, a checkentry
function is also absent since there is nothing to validate, nor a layer-3 tracking module needs
to be loaded in this implementation.

The rest is, again, known standard code for (un)register the target on module inser-
tion/removal and some metadata:

static int __init echo_tg_init(void)
{

return xtables_register_target(&echo_tg_reg);
}

static void __exit echo_tg_exit(void)
{

xtables_unregister_target(&echo_tg_reg);
}

MODULE_DESCRIPTION("Xtables: RFC 862 \"echo\" protocol implementation");
MODULE_LICENSE("GPL");
MODULE_ALIAS("ip6t_ECHO");

Xtables also provides “plural” functions for target (un)registration for your convenience that
take an array of struct xt_targets; they are called xtables_register_targets and xtables_-
unregister_targets.
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5.4 Verdicts
Each rule can be assigned a target, which can be seen as an “action” that is to be done. It is
only called when all matches assigned with a rule have matched. It is invoked with ‘iptables
... -j ECHO‘ for example, and the three special targets ACCEPT, DROP and RETURN that
directly map to a verdict.

On a code base, target extensions still need to return a verdict on their behalf. Depending
on the nature of the target, either NF_ACCEPT or NF_DROP is chosen for terminating targets,
while XT_CONTINUE is used for targets that do not cause rule traversal to stop.

Possible verdict return values for the function are:

• XT_CONTINUE – continue with next rule. Most commonly used by “watcher” (ip6t_LOG,
xt_NFLOG) and mangling targets, to allow for multiple mangling transformations.

• NF_DROP – stop traversal in the current table hook and indicate packet drop. It is
the standard action of any target that has somehow processed the (original) packet
(ip6t_REJECT).

• NF_ACCEPT – stop traversal in the current table hook and indicate packet acceptance.
Used by targets that set up a NAT mapping to indicate that one was indeed set up.

• XT_RETURN – return to the previous chain or default chain policy. This is an internal
target only, no modules use it to avoid creating confusion on behalf of the user.

For security reasons, packets that cannot be processed due to a memory allocation failure,
routing problem, or any other problem should be discarded with NF_DROP so that they will not
leak from, that is, bypass, the firewall.

5.5 Replying with packets
A warning beforehand: sending packets from within Netfilter causes re-entrancy issues before
Linux 2.6.35. ip_tables, ip6_tables, etc. used to store the jump stack for a table within that (per-
cpu) table itself12. Once control from the second invocation returns to the original target, the
jump stack will have been overwritten, and XT_CONTINUE or XT_RETURN — so-called “relative
verdicts” — cannot be used without causing undefined behavior. An absolute verdict from the
NF_* group must be returned.

There will be a lot of local variables in this function. When writing real targets, it is advised
to split big functions up.

static unsigned int echo_tg6(struct sk_buff *oldskb,
const struct xt_action_param *par)

{
const struct udphdr *oldudp;
const struct ipv6hdr *oldip;
struct udphdr *newudp, oldudp_buf;
struct ipv6hdr *newip;
struct sk_buff *newskb;
unsigned int data_len, offset;
void *payload;

12A block of heap memory associated with the per-cpu table is used in a stack fashion.
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The incoming skb might have Extension Headers (or IP options in case of IPv4) which we do
not want in the outgoing skb/packet, therefore the new skb is rebuilt from scratch. For TCP
this is even more important because there can also be TCP options besides Extension Headers.

At first, pointers to the IPv6 and UDP headers are obtained. The third argument to skb_-
header_pointer specifies the amount of bytes to obtain starting at offset. Not always do all
fields need to be retrieved. It would be perfectly valid to use a length of 6 octets instead of
sizeof(struct udphdr) [which is 8 octets] in the second skb_header_pointer call, because
we are not really interested in the UDP checksum. If the region to be extracted from the packet
is out-of-bounds, NULL will be returned. This provides a check for maliciously short packets,
and such should be dropped right away. Also, any UDP packet without any payload is ignored
too.

Our simplistic implementation will linearize skbs to keep the code as simple as possible. (If
the skb is already linear, nothing happens.)

if (skb_linearize(oldskb) < 0)
return NF_DROP;

oldip = ipv6_hdr(oldskb);
oldudp = skb_header_pointer(oldskb, par->thoff,

sizeof(struct udphdr), &oldudp_buf);

Note: Using par->thoff only works when a .proto field has been specified in struct xt_target
(same for struct xt_match).

if (oldudp == NULL)
return NF_DROP;

if (ntohs(oldudp->len) <= sizeof(struct udphdr))
return NF_DROP;

ipv6_hdr (and other accessors, like ip_hdr) can be used without problems since the layer-3
header (without exthdrs/IP options, though) is linear when invoked from ip6_tables/ip_tables,
i. e. it is one continuous stream of bytes and is not fragmented or split across multiple skbs13.
On the other hand, skb_header_pointer needs to be used for data that could potentially be
non-linear. skb_header_pointer will, if a skb boundary is crossed, copy data from multiple
skbs into the buffer pointed to by its fourth argument, making the desired bytes available
in linear memory. If the byte range that should be extracted is already linear, a pointer is
returned, making the operation cheap.

In the next step, the new skb is allocated. The fact that it should have about the same
size as the original packet (minus exthdrs) should be obvious. Some extra space for the link
layer processing seems needed, so LL_MAX_HEADER is added14. The length field of struct
udphdr includes the UDP header’s own size, so sizeof(struct udphdr) is not added again.
Do not forget to use the ntohs and ntohl functions when dealing with fields in network packets.
Only predefined functions, such as ip_hdrlen return host-endian values, but accessing structs
directly may get you another encoding, as they are not converted automatically when the skb
is constructed/processed. The allocation must furthermore be done using GFP_ATOMIC, because
the target function can run in interrupt context, where sleeping is not allowed and a failure to
get hold of memory should result in an immediate return from the allocator with a NULL result.

13This is done in net/ipv6/ip6_input.c, function ipv6_rcv
14The exact use for LL_MAX_HEADER is beyond the scope of this document. For now, it is best to look at

existing target extensions within the kernel and copy their behavior.
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newskb = alloc_skb(LL_MAX_HEADER + sizeof(*newip) +
ntohs(oldudp->len), GFP_ATOMIC);

if (newskb == NULL)
return NF_DROP;

skb_reserve(newskb, LL_MAX_HEADER);

What follows is filling out the fields of a newly attached ipv6hdr structure. skb_put extends
the skb’s tail pointer by as many bytes as specified and returns the original pointer (of type
unsigned char *). This is pretty unspectacular, just remember to swap the addresses:

skb_reset_network_header(newskb);
newip = (void *)skb_put(newskb, sizeof(*newip));
newip->version = oldip->version;
newip->priority = oldip->priority;
memcpy(newip->flow_lbl, oldip->flow_lbl, sizeof(newip->flow_lbl));
newip->nexthdr = IPPROTO_UDP;
newip->saddr = oldip->daddr;
newip->daddr = oldip->saddr;

Second comes the UDP header

skb_reset_transport_header(newskb);
newudp = (void *)skb_put(newskb, sizeof(struct udphdr));
newudp->source = oldudp->dest;
newudp->dest = oldudp->source;
newudp->len = oldudp->len;

Now comes the copy operation. Because the presence of non-linear skbs has been ruled out above
by linearizing it, a few shortcuts can be taken: NULL can be passed in as the fourth argument
to skb_header_pointer, and memcpy can be used. There are probably critical opinions about
linearizing skbs just to make the code simpler. Extracting pieces of the oldskb with skb_-
header_pointer is likely just as expensive; in the typical coded case, it always takes up the
requested amount of stack memory, whereas skb_linearize instead causes a heap allocation
in the event of a non-linear skb. Stack usage vs. a potential allocation, that is the trade-off.

data_len = htons(oldudp->len) - sizeof(*oldudp);
payload = skb_header_pointer(oldskb, par->thoff +

sizeof(*oldudp), data_len, NULL);
memcpy(skb_put(newskb, data_len), payload, data_len);

Now that the data is in newskb, it is time to calculate the checksum. While there are so many
functions in the Linux kernel regarding checksumming — all kinds of hardware offloading and
whatnot — we will pick one:

newudp->check = 0;
newudp->check = csum_ipv6_magic(&newip->saddr, &newip->daddr,

ntohs(newudp->len), IPPROTO_UDP,
csum_partial(newudp, ntohs(newudp->len), 0));

The UDP header is first equipped with a zero start checksum here, as the checksumming
algorithm demands, since the UDP header itself will be part of the data checksum (calculated
by the csum_partial call). Afterwards, the checksum for the pseudo header is added.
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Alternatively, one can also set and leave newudp->check = 0, which would indicate that
we did not care about integrity and no checksum was calculated on purpose.

After the packet has been constructed, it is still necessary to select an output route for it
and actually send it off. It is a fair bit of boilerplate code that is unfortunately duplicated
in a few places in the kernel without having being grouped in a function so far. It is left out
here, but can be looked up in the xt_ECHO code in the Xtables-addons package. There is still
something left, however. The new skb gets the same conntrack entry as the old skb, so it will
be part of the connection that is seen in NFCT.

nf_ct_attach(newskb, oldskb);
ip6_local_out(newskb);
return NF_DROP;

}

If the packet is handled by our module, it must not be passed to the real UDP stack which
would otherwise be called after all the Netfilter hooks completed. If it were to be let through
to the UDP core, an ICMP error might be generated because there is no open socket on that
port, or an application that does have a socket open sends some sort of unwanted negative
reply. This must be avoided, so NF_DROP is used as the final verdict.

::80# ip6tables -A INPUT -p udp --dport echo -j ECHO;
::1# tcpdump -Xs0 -lni eth0 udp &
::1# echo "Xtables-addons" | socat - "udp-sendto:[2a01:4f8:100:6ffd::80]:echo"
15:50:32.277605 IP6 (hlim 64, next-header UDP (17) payload length: 23)
2a01:4f8:100:6ffd::1.54890 > 2a01:4f8:100:6ffd::80.7:
[udp sum ok] UDP, length 15

0x0000: 6000 0000 0017 1140 2a01 04f8 0100 6ffd ‘......@*.....o.
0x0010: 0000 0000 0000 0001 2a01 04f8 0100 6ffd ........*.....o.
0x0020: 0000 0000 0000 0080 d66a 0007 0017 1130 .........j.....0
0x0030: 5874 6162 6c65 732d 6164 646f 6e73 0a Xtables-addons.

15:50:32.277895 IP6 (hlim 64, next-header UDP (17) payload length: 23)
2a01:4f8:100:6ffd::80.7 > 2a01:4f8:100:6ffd::1.54890:
[udp sum ok] UDP, length 15

0x0000: 6000 0000 0017 1140 2a01 04f8 0100 6ffd ‘......@*.....o.
0x0010: 0000 0000 0000 0080 2a01 04f8 0100 6ffd ........*.....o.
0x0020: 0000 0000 0000 0001 0007 d66a 0017 1130 ...........j...0
0x0030: 5874 6162 6c65 732d 6164 646f 6e73 0a Xtables-addons.

5.6 Changing packet payload
The packet payload can simply be changed by toying around with the skb. You can write to
skb->data, or even resize it if need be. What you do need to pay attention to is that you
possibly need to regenerate layer-4 (e. g. TCP/UDP) and layer-3 (needed in IPv4, but not in
IPv6) checksums.

static unsigned int memfry_tg(struct sk_buff *skb,
const struct xt_action_param *par)

{
struct udphdr *udph;
unsigned char *data;
unsigned int data_len;
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if (!skb_make_writable(skb, skb->len))
return NF_DROP;

skb_make_writable will ensure here that we will have exclusive ownership of the packet. It
may also, as a matter of fact, cause the pointers inside the skb to change, so if you have copied
skb->data to any of your variables, you will have to re-fetch the skb->data pointer afterwards.

udp = skb->data + ip_hdrlen(skb);
data = skb->data + ip_hdrlen(skb) + sizeof(struct udphdr);
data_len = skb->len - ip_hdrlen(skb) - sizeof(struct udphdr);

for (i = 0; i < data_len; ++i)
data[i] ^= i;

/* recalculate checksum */

return XT_CONTINUE;
}

You can take shortcuts in calculating the checksum if you can assure that the checksum remains
the same after you applied your transformation. For everything else, there are a handful of
functions.

5.7 Checksumming
#include <net/checksum.h>

__wsum csum_partial(const void *buff, int len, __wsum sum);
__sum16 csum_fold(__wsum sum);
__wsum csum_unfold(__sum16 sum);
__sum16 csum_tcpudp_magic(__be32 saddr, __b32 daddr, unsigned short len,

unsigned short proto, __wsum sum);

The checksum headers define __wsum to be a 32-bit unsigned integer, and __sum16 to be a
16-bit one. These esoteric names are merely for the benefit of the sparse(1) utility.

csum_partial will calculate a 32-bit checksum for len bytes starting at buff, using sum
for starting value, the latter of which should be zero if there is no previous value that should
be augmented.

Checksums may be calculated in chunks larger than 16 bits, and csum_fold provides a
function to turn a 32-bit checksum into a 16-bit one. csum_unfold does the reverse. Both the
32-bit input and the 16-bit output checksum are equivalent for further computations, though
there is of course no bijective mapping between the two, which is why the output value of
csum_unfold is not necessarily the same as the original 32-bit input.

csum_ipv6_magic and csum_tcpudp_magic facilitate calculating the checksum of the pseudo-
header.

#include <net/ip6_checksum.h>

__sum16 csum_ipv6_magic(const struct in6_addr *saddr,
const struct in6_addr *daddr, uint32_t len, unsigned int proto,
__wsum sum);
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When payload is just minimally changed, recomputing it all is a waste of power, so it is also
possible to do updates of checksums:

#include <net/checksum.h>

void csum_replace2(__sum16 *sum, __be16 from, __be16 to);
void csum_replace4(__sum16 *sum, __be32 from, __be32 to);

5.8 Modifying packet parameters
One of the “easier” classes of targets are those that do not play much with the packet payload,
in fact, that only do read operations on it. Xtables has quite a number of them — xt_MARK
and xt_CONNMARK, just to name two. These influence the skb or connection parameters
and otherwise do not do very much besides being very flexible about what they do, providing
masked bit operations on parameters. xt_IPMARK is not much different, albeit simple enough
to show what it does:

static unsigned int ipmark_tg4(struct sk_buff *skb,
const struct xt_action_param *par)

{
const struct xt_ipmark_tginfo *info = par->targinfo;
const struct iphdr *iph = ip_hdr(skb);
uint32_t mark;

if (info->sel == XT_IPMARK_SRC)
mark = ntohl(iph->saddr);

else
mark = ntohl(iph->daddr);

mark >�>= info->shift;
mark &= info->andmask;
mark |= info->ormask;
skb->mark = mark;
return XT_CONTINUE;

}

5.9 Setting up a NAT mapping
Another common target scenario is setting up a NAT mapping for a connection. To do this,
a range of addresses and/or ports that the NAT engine may use must be handed to nf_nat_-
setup_info. Additionally, the target is only valid in the nat table. struct nf_nat_range and
the IP_NAT_* defines are available through <net/netfilter/nf_nat.h>.

static unsigned int marksnat_tg(struct sk_buff *skb,
const struct xt_action_param *par)

{
const struct iphdr *iph = ip_hdr(skb);
struct nf_nat_range range = {};
struct nf_conn *ct;

/* for debug */
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ct = nf_ct_get(skb, &ctinfo);
NF_CT_ASSERT(ct != NULL && (ctinfo == IP_CT_NEW ||

ctinfo == IP_CT_RELATED));

There are currently three range flags available. IP_NAT_RANGE_MAP_IPS advises the NAT sub-
system to do translation on the layer-3 addresses, IP_NAT_RANGE_PROTO_SPECIFIED makes sure
that the given layer-4 protocol port range in range.min and range.max are used, and IP_NAT_-
RANGE_PROTO_RANDOM, with which range.min and range.max are ignored and instead, the NAT
engine selects a randomly-chosen port number at runtime.

range.flags = IP_NAT_RANGE_MAP_IPS;
range.min_ip = ntohl(iph->saddr) & 0xFFFFFF00;
range.min_ip |= skb->mark & 0xFF;
range.min_ip = htonl(range.min_ip);
range.max_ip = range.min_ip;

Shown here is a sample mapping dependent upon the Netfilter mark, using the lower 8 bits
of the mark for constructing the new (source) address, and the next 8 and 8 bits for the port
range in some way that the range is between [1024, 65535].

if (iph->protocol == IPPROTO_TCP ||
iph->protocol == IPPROTO_UDP) {

range.flags |= IP_NAT_RANGE_PROTO_SPECIFIED;
range.min.tcp.port = (skb->mark & 0x00FF00) <�< 2;
range.max.tcp.port = (skb->mark & 0xFF0000) >�> 8;

}

return nf_nat_setup_info(ct, &range, IP_NAT_MANIP_DST);
}

Destination NAT is furthermore only valid in the PREROUTING and OUTPUT hooks while
Source NAT is only in the POSTROUTING and OUTPUT chains. This has to be enforced by
setting the table and hooks members of the registration structure accordingly.

static struct xt_target marksnat_tg_reg __read_mostly = {
.name = "MARKSNAT",
.revision = 0,
.family = NFPROTO_IPV4,
.table = "nat",
.hooks = (1 <�< NF_INET_POST_ROUTING),
.target = marksnat_tg,
.me = THIS_MODULE,

};

5.10 Rule validation – checkentry function
Like with Xtables matches, the checkentry function is called whenever a rule is about to be
inserted and allows for checks to be done and run-time dependencies to be loaded, as discussed
in section 2.6. Like before, the checkentry function may be omitted.

The xt_TCPMSS kernel module provides an example of how checkentry-based hook ver-
ification is done. Here, if the user manually sets the MSS, nothing special will happen. But
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when automatically setting the MSS relative to the PMTU, we need the PMTU value, which is
only available after the routing decision, so one can only use this method to set the MSS from
the FORWARD, OUTPUT and POSTROUTING chains, when an output route has been decided
for the packet.

static int tcpmss_tg_checkentry(const struct xt_tgchk_param *par)
{

const struct tcpmss_tg *info = par->targinfo;

if (info->mss == XT_TCPMSS_CLAMP_PMTU &&
(hook_mask & ~((1 <�< NF_INET_FORWARD) |
(1 <�< NF_INET_LOCAL_OUT) |
(1 <�< NF_INET_POST_ROUTING))) != 0)

return -EINVAL;
return 0;

}

5.11 Rule destruction – destroy function
As with matches, targets can have a destroy function as a counterpart to checkentry. It may
be omitted, too.

static void xyz_tg_destroy(const struct xt_tgdtor *par)
{

pr_info("A \"%s\" target was destroyed.\n",
par->target->name);

}

5.12 Notes for in-tree modifications
If you depend on a certain table like mangle, nat or raw, you should add a dependency line in
the Kconfig file for your target. For some reason, this is not done for the filter table; anyway:

config NETFILTER_XT_TARGET_CONNMARK
tristate ’"CONNMARK" target support’
depends on IP_NF_MANGLE || IP_NF6_MANGLE

Tables are still per-family (i. e. not generic enough to be handled in x_tables.c), which is why
there are two symbols to depend on (IP_NF_MANGLE (CONFIG_IP_NF_MANGLE) and IP_NF6_-
MANGLE). Other symbols are IP_NF_RAW and IP_NF6_RAW for the raw table, and NF_NAT for the
(IPv4) nat table. IPv6 does not have a nat table.
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Part II
Connection Tracking
There are no specific prerequisites. The API has remained pretty much the same over at least
2.6.23 to 2.6.25. There have been slight type changes for 2.6.26(-rc1) (and which will be used
here). Xtables-addons does not provide API compatibility coverage for connection tracking yet
as there are no modules merged that would require such, but its build system might still be
very handy in writing a module.

6 nf_conn structure
Sometimes it is necessary to retrieve connection parameters. The nf_ct_get function will find
the connection associated with a packet, if there is such, and return it along with the connection
status. For nf_ct_get, you need to include <net/netfilter/nf_conntrack.h>, and for enum
ip_conntrack_info, you will need <linux/netfilter/nf_conntrack_common.h>. The reason
this is split is that the linux/ directory contains headers which are exported to userspace, and
the values for constants like IP_CT_NEW are surely useful in userspace too, while nf_ct_get is
a function only available in the kernel.

#include <linux/netfilter/nf_conntrack_common.h>

enum ip_conntrack_info ctinfo;
struct nf_conn *ct;

ct = nf_ct_get(skb, &ctinfo);

There exist a multitude of connection states and statuses, and you can match all of them with
the conntrack match in Xtables, or print the connection information with xt_LOGMARK, a
target extension in the Xtables-addons package. Note that the connection tracking subsystem
is invoked after the raw table has been processed, but before the mangle table.

if (ct == NULL)
pr_info("This is --ctstate INVALID\n");

ct can be NULL if the packet has been declared INVALID by the connection tracking subsystem.
This can happen for example if a TCP SYN is sent on an already-existing connection.

else if (ct == &nf_conntrack_untracked)
pr_info("This one is not tracked\n");

The NOTRACK target can be used (in the raw table) to exempt a packet from connection
tracking; this is especially useful when using the TARPIT target(author?) [Chaostables]. It
can also be used on any packet you would like to drop, but generally, people do not bother
because it often incurs a rule duplication. Just dropping packets in the filter table means that
a connection entry will remain until it times out, which generally works well enough. Default
timeout depends on protocol and implementation, and is usually between 30 seconds to 2
minutes when you drop connections marked as NEW. Speaking of NEW:
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else if (ctinfo % IP_CT_IS_REPLY == IP_CT_NEW)
pr_info("This is the first packet in a connection\n");

else if (ctinfo % IP_CT_IS_REPLY == IP_CT_RELATED)
pr_info("Welcome Mr. Bond, we have been expecting you\n");

else if (ctinfo % IP_CT_IS_REPLY == IP_CT_ESTABLISHED)
pr_info("You can figure out this one!\n");

If ct is not NULL and not the fake connection tracking entry used for “untracking” packets, the
connection is a valid one and its state can be found in ctinfo. enum ip_conntrack_ctinfo
combines both the connection state and the packet direction with an arithmetic add instead of
a flag, which may seem a bit confusing. Here goes:

• IP_CT_NEW – new connection created by this packet

• IP_CT_RELATED – this packet starts a new but expected connection

• IP_CT_ESTABLISHED – connection is established, packet is in “original” direction

• IP_CT_ESTABLISHED + IP_CT_IS_REPLY – connection is established, packet is in “reply”
direction

• IP_CT_RELATED + IP_CT_IS_REPLY – expected new connection started, and packet is in
the “reply” direction. It may be surprising how the first packet in a connection can be in
the reply direction (note: reply direction of the expected connection not the original one).
This is actually used for ICMP replies, at which point RELATED+REPLY seems logical.

• IP_CT_NEW + IP_CT_IS_REPLY is not used and not valid.

By using ctinfo % IP_CT_IS_REPLY (in this case analogous to ctinfo & ~IP_CT_IS_REPLY if
a flag would had been used), the connection state can be extracted. The direction in which the
packet flows could be extracted using ctinfo / IP_CT_IS_REPLY, but the convenience macro
CTINFO2DIR(ctinfo), as defined in <linux/netfilter/nf_conntrack_tuple_common.h> uses
an open-ended range comparison instead15.

15Something whose implementation details should be quickly forgotten again and the macro just be used.
Too bad this mess cannot be easily changed as it is exported to userspace.
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Connection trackers
Connection trackers are one of the essential parts of the connection tracking infrastructure, and
related to that, stateful firewalling. Their job is to associate an IP packet with a connection
and to assure the correctness of packets and their parameters. TCP streams for example are
inspected for proper window size and correct state transitions.

In it simplest case, the source and destination addresses are copied from the packet to
a struct nf_conntrack_tuple, the latter of which is then chained along with other tuples,
forming the table of known connections.

Connection tracking is split up into two categories, layer-3 and layer-4 modules, allowing
maximum modularity. There are also layer-5 trackers though they are referred to as “connection
helpers” because their existence does not effect the original connection, but future connections.

7 Layer-3 connection tracker
7.1 Objective
Of course, the question came up what geeky idea this chapter could be filled, and the results
were disenchanting.

Showcasing a sample layer-3 connection tracker that is not one of those included in the kernel
is going to be a very tough job. Not only because IPv4 and IPv6 are the most predominant
protocols used, but also because the kernel does not currently have Netfilter hooks for anything
besides these two plus a few special ones.

This led to some quite interesting undertakings. Jan came up with a connection tracker
for IPX, but reviving old DOS games in virtual machines turned out to be a longer-term task
due to technical problems with modern operating systems. Resorting to an ARP connection
tracker was not too fruitful either after recognizing that there were no Netfilter hooks in the
ARP input/output paths. So that idea was also scrapped because we would like to avoid
touching the kernel and putting the reader through a perhaps long recompile and installation
cycle, being not only outside the scope of this book but also way beyond networking.

7.2 Structural definition
The structure for layer-3 trackers is defined in <net/netfilter/nf_conntrack_l3proto.h>.
It contains packet-to-tuple association, tuple inversion functions and one to obtain the layer-4
protocol number.

struct nf_conntrack_l3proto {
const char *name;
uint16_t l3proto;

bool (*pkt_to_tuple)(const struct sk_buff *skb, unsigned int nhoff,
struct nf_conntrack_tuple *tuple);

bool (*invert_tuple)(struct nf_conntrack_tuple *inverse,
const struct nf_conntrack_tuple *orig);

int (*print_tuple)(struct seq_file *,
const struct nf_conntrack_tuple *);

int (*get_l4proto)(const struct sk_buff *skb, unsigned int nhoff,
unsigned int *dataoff, uint8_t *protonum);
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struct module *me;
};

Layer-3 connection trackers are pretty useless without an actual layer-4 part. The pkt_to_tuple
and invert_tuple functions will be called, but since that is all the nf_conntrack_l3proto
structure makes available, you will not be seeing any entries in the Netfilter connection table,
observable by running ‘conntrack -L‘ or looking at the kernel-provided map at /proc/net/
nf_conntrack. Only when there is an appropriate layer-4 tracker registered, connection track-
ing will actually be done and events be generated that can be monitored using ‘conntrack
-E‘.

The get_l4proto function should inspect the packet and return the layer-4 protocol number
from the nexthdr field (IPv6) or the Protocol field (IPv4). It may return -NF_ACCEPT if the
connection is not to be tracked.

7.3 Generic L4 tracking
While there are only layer-4 trackers for the most common protocols (actually protocols where
it makes sense to do so), there is a not insubstantial number of protocols that get tracked, as
far as that is possible, using a generic tracker. AH and ESP are two that fall into this category,
for example.

The generic tracker maps all packets for a layer-4 protocol to one connection, this is as good
as the logic can get. The connection tracking table will then show an entry like:

# conntrack -L | grep "^unknown"
unknown 50 537 src=192.168.0.137 dst=192.168.16.34 packets=12 bytes=1456
src=192.168.16.34 dst=192.168.0.137 packets=12 bytes=2704 mark=0 use=1

We hope the reader will excuse the shortness of this chapter. Be assured that writing a layer-3
tracker, should the need arise, is much the same like a layer-4 tracker which will be covered
right in the next chapter.
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8 Layer-4 connection tracker
8.1 Structural definition
The struct for layer-4 trackers is contained in <net/netfilter/nf_conntrack_l4proto.h>
and is as follows. The order in which the callbacks error–destroy are arranged here depict
the order they are executed in as a packet flows through.

struct nf_conntrack_l4proto {
const char *name;
uint16_t l3proto;
uint8_t l4proto;

int (*error)(struct sk_buff *, unsigned int dataoff,
enum ip_conntrack_info *ctinfo, unsigned int pf,
unsigned int hooknum);

bool (*pkt_to_tuple)(const struct sk_buff *skb,
unsigned int dataoff,
struct nf_conntrack_tuple *tuple);

bool (*invert_tuple)(struct nf_conntrack_tuple *inverse,
const struct nf_conntrack_tuple *original);

int (*packet)(struct nf_conn *ct, const struct sk_buff *skb,
unsigned int dataoff, enum ip_conntrack_info ctinfo,
unsigned int pf, unsigned int hooknum);

bool (*new)(struct nf_conn *ct, const struct sk_buff *skb,
unsigned int dataoff);

void (*destroy)(struct nf_conn *ct);

int (*print_conntrack)(struct seq_file *s,
const struct nf_conn *ct);

int (*print_tuple)(struct seq_file *s,
const struct nf_conntrack_tuple *tuple);

struct module *me;
};

It also has packet-to-tuple conversion/association and tuple inversion, but also “packet”, “new”
and “destroy”. While these extra callbacks are not layer-4 specific, the nf_conntrack_l3proto
structure does not contain them16 due to lack of use.

8.2 Objective
In this chapter we have a look at an ESP connection tracking module. It works absolutely,
but has no practical field value because the generic tracking handles the common daily usage
with IPsec traffic just as well. If you need to track specific SPI streams however for some very
obscure reason, this module is for you.

ESP is encrypted and hence there is no way for a non-endpoint to look inside it17. Even so,
for “tunnel” mode and actually any sort of (unencrypted) tunnels/encapsulation, we often do

16The unused callbacks in struct nf_conntrack_l3proto were removed for 2.6.26.
17Tunnel endpoints may use the “policy” match to inspect transformed connections.
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not want to inspect the inner contents, because that is what a tunnel is about — to track the
tunnel connection itself18.

8.3 Module initialization
The name member gives a short identifying string to conntrack which is used for reporting to
userspace. It should be kept simple, and should definitely not have any spaces in it. l3proto
and l4proto specify the layer-3 and layer-4 protocols for which this helper should be invoked,
respectively. Note that in case of an IPv6 packet, the first non-extension header’s protocol
number or, if that did not exist, the last header’s protocol number is used for matching with a
loaded connection tracking module — it is therefore currently not possible19 to invoke a helper
based on e. g. the presence of an IPv6 Destination Options header.

static struct nf_conntrack_l4proto esp_ctrack_reg __read_mostly = {
.name = "esp",
.l3proto = NFPROTO_IPV6,
.l4proto = IPPROTO_ESP,

The rest of the struct consists of pointers to functions that make up the connection tracking
helper module:

• esp_ctrack_pkt2tuple – mapping a packet to a (connection) tuple

• esp_ctrack_new – function that is called once a new “connection” (read: connection
tracking entry) is added

• esp_ctrack_packet – packet processing function, e. g. updating the internal tracking
state. TCP uses this to go from SYN_SENT to SYN_RECV, for example.

• esp_ctrack_invtuple – inverting a tuple

• esp_ctrack_prct – print connection tracking entry

• esp_ctrack_prtuple – print connection tuple

.pkt_to_tuple = esp_ctrack_pkt2tuple

.new = esp_ctrack_new

.packet = esp_ctrack_packet,

.invert_tuple = esp_ctrack_invtuple,

.print_conntrack = esp_ctrack_prct,

.print_tuple = esp_ctrack_prtuple,

.me = THIS_MODULE,
};

8.4 The tuple structures
union nf_conntrack_man_proto contains the “manipulable protocol”20 part, somehow a col-
lective term for (one side of) the layer-4 specific tuple data such as ports.

18Which does not mean that there would be no way to analyze in-tunnel traffic (unencrypted tunnels) with
only stock Linux kernels.

19In previous footnotes I always said “already developed”, now here is something that is yet to be done!
20Well, this is what the abbreviation man_proto suggests to me, given that the data stored in it is can be

modified as part of NAT.
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union nf_conntrack_man_proto {
__be16 all;

struct {
__be16 port;

} tcp;
...

};

There will be a member called all; its exact type depends on how the developers laid nf_conntrack
out for a particular kernel release. It is internal to nf_conntrack as an optimization to tuple
matching and should rather not be used in any way by modules. However, since an external
module might want to use the available space without patching any of the kernel files, some
hackery is needed, and it comes with its limitations too.

struct esp_man_proto {
#if sizeof(union nf_conntrack_man_proto) >= sizeof(uint32_t)

__be32 spi;
#elif sizeof(union nf_conntrack_man_proto) >= sizeof(uint16_t)

__be16 spi;
#endif
};

static inline struct esp_man_proto *
esp_priv(union nf_conntrack_man_proto *ptr)
{

return (void *)ptr;
}

This does look indeed gory and ugly, but it allows us to use at least the 16 bits of space that
union nf_conntrack_man_proto is big in 2.6.25. The compound is only 16 bits in size since all
in-kernel connection trackers only need to track this much. Therefore, the sample ESP module
needs to make a cut in the packet-to-tuple mapping correctness — the SPI truncation may
cause packets to be falsely attributed to a connection, but I will assume that for any non-static
key setup you will be using random SPI numbers generated by an IPsec/IKE daemon. For
some future modules these 16 bits may not be enough and would warrant a change of union
nf_conntrack_man_proto in the kernel source.

8.5 Packet to conntrack
When a packet enters the connection tracking subsystem, it is passed on to the appropriate
layer-4 connection tracking module, to the pkt_to_tuple hook. This function should map the
packet to a connection tuple, the latter of which uniquely identifies a “connection” in Netfilter
terms.

static int esp_ctrack_pkt2tuple(const struct sk_buff *skb,
unsigned int dataoff, struct nf_conntrack_tuple *tuple)

{
const struct ip_esp_hdr *ptr;
struct esp_man_proto *man;
struct ip_esp_hdr buf;
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Since only the first four bytes of the ESP header are needed to obtain the SPI, passing in 4 for
the third argument is sufficient; no need to retrieve the entire ESP header.

ptr = skb_header_pointer(skb, dataoff, 4, &buf);
if (ptr == NULL)

return false;
man = esp_priv(&tuple->dst.u);
man->spi = ptr->spi;
return true;

}

The connection tracking core zeroes the tuple before it is handed to the layer-3 and layer-4
connection trackers. When the esp_ctrack_pkt2tuple function receives it, it is guaranteed
that tuple->src.u and tuple->dst.u (the layer-4 parts) are zeroed, and tuple->src.u3 and
tuple->dst.u3 (the layer-3 parts) are filled in.

8.6 Tuple inversion
When a packet arrives, it gets compared to all pre-existing tuples to see if a packet is in the
other direction of a connection.

The connection tracking engine gets fed packets without knowing what interface they came
on in or which interface they will leave on, if any21. Connection tracking does not even want
to know that, usually, since policy routing may cause the packet to enter or leave on different
interfaces each time, especially in setups with load balancing.

IPsec flows are unidirectional in nature, and they do not provide a way to find something
that identifies the direction in the other direction. In TCP for example, each packet has both
a source and a destination port. In an ESP packet however, you will only find a destination
SPI (“port”). Therefore, tuple inversion is not possible for ESP and the function should return
false.

static bool esp_ctrack_invtuple(struct nf_conntrack_tuple *inverse,
const struct nf_conntrack_tuple *original)

{
return false;

}

But in most cases where tuples are invertible, all it takes is to actually do the inversion. orig
and tuple point to different memory locations, so no temporary copying to the stack is needed.

static bool tcp_invert_tuple(struct nf_conntrack_tuple *tuple,
const struct nf_conntrack_tuple *orig)

{
inverse->src.u.all = original->dst.u.all;
inverse->dst.u.all = original->src.u.all;

}
21This information can be retrieved from the skb, but that is an implementation detail of sk_buff and should

be avoided if possible.
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8.7 Dumping entries
There exist two hooks which are called for dumping information about the connection and
the tuple. The first is for example used by the TCP tracker to return the state of the TCP
connection (e. g. SYN_SENT), while the second is used to print per-tuple layer-4 parameters such
as source and destination port, or SPI for ESP.

static int esp_ctrack_prct(struct seq_file *s, const struct nf_conn *ct)
{

/* Nothing special to report */
return 0;

}

The return value for the two functions shall be that of seq_printf, which returns the number
of bytes written to the stream.

static int esp_ctrack_prtuple(struct seq_file *s,
const struct nf_conntrack_tuple *tuple)

{
unsigned int spi = ntohl(esp_priv(&tuple->dst.u));
return seq_printf(s, "spi=0x%x ", spi);

}

8.8 Summary
To see that the module works, you can put the module on any host through which some ESP
traffic flows. Trying to use this connection tracking module on a tunnel/transport endpoint will
not work as intended, because the decapsulation takes place before Connection Tracking gets
to see the skb, and encapsulation takes place after CT already saw the skb, though Xtables
will see the skb twice — once decapsulated and once encapsulated.

So under the assumption that the ESP tracking module is put to a test on a host that is not
an endpoint, one can observe the spawning of a new Netfilter connection once a ESP packet
has been sighted:

# conntrack -E
[NEW] esp 50 120 src=2001:db8::31:1 dst=2001:db8::32:2 spi=0xdc0adc5e
[ASSURED] src=2001:db8::31:1 dst=2001:db8::32:2 sport=22 dport=39760
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9 Connection tracking helper
This section is incomplete.

A connection tracking helper is a module that inspects packet flows, more generically, the
payload of packets, and sets up connection tracking expectations. They can then be matched
in the Xtables firewall with the RELATED (for the first packet) and ESTABLISHED (all further
packets) state bits of the conntrack match. This is commonly seen in user scripts as

ip6tables -m conntrack --ctstate RELATED,ESTABLISHED

In this chapter, we will glimpse at a connection tracking helper that will look at HTTP streams
and create expectations for further connections.

When the Netfilter connection tracking subsystem is loaded, you can depend on all packets
entering the stack to be already defragmented.

9.1 Naming convention
• http_cthelper_reg – structure with metadata and vtable

• http_cthelper – the main helper function

• http_cthelper_destroy – a destroy function (if used)

9.2 Skeletal structure
The struct nf_conntrack_helper can be obtained by including <net/netfilter/nf_conntrack_helper.h>.

struct nf_conntrack_helper {
const char *name;
unsigned int max_expected;
unsigned int timeout;

/* Tuple of connection to analyze */
struct nf_conntrack_tuple tuple;

/* Our helpful function */
int (*help)(struct sk_buff *skb, unsigned int protoff,

struct nf_conn *ct, enum ip_conntrack_info ctinfo);
void (*destroy)(struct nf_conn *ct);

struct module *me;
};

Besides internal fields that should not be meddled with (left them out in this document, of
course), the structure contains function pointers for conversion from and to Netlink attributes,
but that is currently outside the scope of this document.

9.3 Initialization
Though not quite visible directly, struct nf_conntrack_helper describes a connection tracker
helper for exactly one tuple only, that is — in simple terms — one TCP/UDP port per struct.
This may seem like a huge drawback given that protocols can generally be run over arbitrary
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port numbers, but this is how helpers currently are implemented. As a workaround, connection
tracking helpers define an array of nf_conntrack_helpers and the user gets to choose a fixed
port list the administrator wants to have inspected.

static struct nf_conntrack_helper ftp_cthelper_reg __read_mostly = {
.name = "ftp",
.max_expected = 1,
.timeout = 60,
.tuple = {

.src.l3num = NFPROTO_IPV4,

.dst.protonum = IPPROTO_TCP,

.dst.u.tcp.port = 21,
},
.help = ike_cthelper,
.me = THIS_MODULE,

};

Of course, this code block is just an example; the nf_conntrack_ftp module does the regis-
tration a bit more elegant in that it fills out the structure at module initialization time instead
of typing it out, well, because the user can change them.
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Part III
Netfilter Core
10 Netfilter Hooks
The networking code has a number of calls that invoke Netfilter, and everything that is tied to
it (given the modules are loaded). The most common hook components are Xtables (firewall),
connection tracking, IPv4 NAT engine and the IPVS Virtual Server. ip6_input.c calls out to
a specific hook:

return NF_HOOK(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb,
dev, NULL, ip6_rcv_finish);

which will invoke all prerouting hooks. NF_HOOK is a monstrous macro crypt until it enters the
real function, nf_hook_slow, and I leave that to the particular developer to munge that part
on his own. (No worries, just training you.)

10.1 Skeletal structure
struct nf_hook_ops contains the vtable and metadata for a hook, like name and associated
protocol. The definition can be obtained by including <linux/netfilter.h>. Hooks are
per-protocol; one structure can only be registered for one protocol, so you need an array of
nf_hook_ops if you plan to register multiple hooks.

struct nf_hook_ops {
unsigned int pf;
unsigned int priority;
unsigned int hooknum;
unsigned int (*hookfn)(unsigned int hooknum, struct sk_buff *skb,

const struct net_device *in,
const struct net_device *out,
int (*okfn)(struct sk_buff *));

struct module *owner;
}

10.2 Initialization
The pf member associates the hook with the given group of calls. Possible values are listed
in netfilter.h. The most common values are, of course, NFPROTO_IPV6, NFPROTO_IPV4,
NFPROTO_ARP, and NFPROTO_BRIDGE. You will find only NFPROTO_IPV4 in net/ipv4/ in the
kernel tree, and only NFPROTO_IPV6 in net/ipv6/.

priority specifies where in the order of execution this hook gets executed. A few symbolic
constants have been defined in <linux/netfilter_ipv4.h> and <linux/netfilter_ipv6.h>
that can be used as a base for offsets, e. g. as the expression NF_IP6_PRI_FILTER +1 to get a
hook that runs after the filter table has been processed. The value you pass in here is largely
up to the module author, bound by the desired effect.

As with Xtables modules, the registration structure must not be const because fields in it
will be modified by the implementation.
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static struct nf_hook_ops myhook_ops __read_mostly = {
.pf = NFPROTO_IPV6,
.priority = 1,
.hooknum = NF_INET_LOCAL_OUT,
.hookfn = myhook_fn,

};

static int __init myhook_init(void)
{

return nf_register_hook(&myhook_ops);
}

static void __exit myhook_exit(void)
{

nf_unregister_hook(&myhook_ops);
}

module_init(myhook_init);
module_exit(myhook_exit);

The hook infrastructure itself does not care about the hooknum either. A hook call speci-
fies a certain hooknum and the hook module has to make something of it. It is generally
used to encode the place the call originated; Xtables, NAT and connection tracking know of
the five constants mentioned earlier (section 5.3), NF_INET_{PRE,POST}_ROUTING, NF_INET_-
LOCAL_{IN,OUT} and NF_INET_LOCAL_OUT.

10.3 Main function

static unsigned int myhook_fn(unsigned int hooknum, struct sk_buff *skb,
const struct net_device *in, const struct net_device *out,
int (*okfn)(struct sk_buff *))

{
pr_info("Arr matey! - Captain Hook approves your packet!\n");
return NF_ACCEPT;

}

The possible values a hook function can return are similar to those of a target. There is no
XT_RETURN, because that one does not make sense here, there is no jump chain in which we
could return. There is also no XT_CONTINUE, which, at best, would be equal to NF_ACCEPT,
meaning that this hook allowed the packet to pass. Any other value indicates the packet has
been “consumed”, as the linux/netfilter.h header file puts it. (So all of the NF_* constants
as described in section 5.4 can be used.)

There are a few more not so common verdicts, mostly all internal to Netfilter, such as

• NF_QUEUE – used by xt_NFQUEUE to relay the packet to userspace for further processing

• NF_STOLEN – Whereas NF_DROP instructs Netfilter to drop the packet and free the skb,
NF_STOLEN indicates that the hook has taken care of it so Netfilter only drops it. Netfilter
forgetting about the packet does not imply the packet is lost — the hook may retransmit
or delay it, for example.
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• NF_REPEAT – causing a packet to be stopped and rerun through the current Netfilter hook.
Connection tracking uses this to simply its code path.

• NF_STOP – functionally the same as NF_ACCEPT. (Used as annotation?)
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Part IV
Appendix
A Function reference
This list shall give a brief overview of the most common or useful functions you can use with
Xtables modules. (We have even left out const and unsigned qualifiers to not bloat the
prototypes too much.)

Byte swapping

• htons, htonl, ntohs, ntohl, le16_to_cpu, le32_to_cpu, le64_to_cpu, be16_to_cpu,
be32_to_cpu, be64_to_cpu, cpu_to_le16, cpu_to_le32, cpu_to_le64, cpu_to_be16,
cpu_to_be32, cpu_to_be64.

<linux/ip.h>

• struct iphdr – representation of the IPv4 header

• ip_hdr(struct sk_buff *) – returns a pointer to the IPv4 header

<linux/ipv6.h>

• struct ipv6hdr – representation of the IPv6 header

• ipv6_hdr(struct sk_buff *) – returns a pointer to the IPv6 header

<linux/kernel.h>

• NIPQUAD(uint32_t), NIPQUAD_FMT – macros to be used when dumping IPv4 addresses
with printk

• NIP6(struct in_addr6), NIP6_FMT – macros to be used when dumping IPv6 addresses
with printk

<linux/skbuff.h> The pointers in an skb are: head, data, tail, end. The allocated region
spans head–end (not tail—odd naming here!), and the data region spans data–end.

• skb_clone – copy an skb, but the data remains shared (“hardlinked”)

• skb_copy – copy an skb and its data

• skb_copy_expand – copy an skb and its data, and additionally expand its size

• skb_copy_bits – scatter-gather bytes from a potentially non-linear skb and put them
into a buffer

• skb_header_pointer(struct sk_buff *skb, int offset, int length, void *buf ) – returns
a pointer to the start of the layer-3 header. In case the skb is not linear, it will do
a scatter-gather copy of the selected region into the provided buffer and returns buf.
(skb_header_pointer can call skb_copy_bits.)
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• skb_linearize – make an skb linear

• skb_make_writable(struct sk_buff *, unsigned int length) – make the skb writable
for the given length; required for targets; returns NULL on failure. May change the pointers
inside the skb.

• skb_pull(struct sk_buff *, unsigned int length) – “pull skb->data towards the
right” — increments skb->data by length and decreases skb->len by the same amount.

• skb_pull_tail(struct sk_buff *, unsigned int length) – “pull skb->tail towards the
right”

• skb_push(struct sk_buff *, unsigned int length) – “push skb->data towards the
left” — decrements skb->data pointer by length and increases skb->len by the same
amount.

Once again let me recommend (author?) [LinuxNetInt] which was very helpful in understand-
ing the skb operations.

<linux/netfilter/x_tables.h>

• xt_(un)register_match(es)(struct xt_match *), xt_(un)register_target(s)(struct
xt_target *) – (un)register matches/targets with the Xtables framework; functions re-
turn negative on failure.

<net/ip.h>

• ip_hdrlen(struct sk_buff *) – size of the IPv4 header in this skb. The skb must
contain IPv4 data.

<net/ipv6.h>

• ipv6_addr_cmp(struct in6_addr *, struct in6_addr *) – compare two IPv6 addresses
for equality; returns 0 if they match.

• ipv6_masked_addr_cmp(struct in6_addr *, struct in6_addr *) – compare two IPv6
addresses with mask; returns 0 if they match.

• int ipv6_skip_exthdr(struct sk_buff *, int start, uint8_t *proto) – locate the start
of the first non-extension header beginning at start. The protocol of the non-extension
header that was found is stored in *proto, and the function returns the offset.

<net/netfilter/nf_conntrack.h>

• nf_ct_get(struct sk_buff *) – get conntrack entry for a packet

• nf_ct_l3proto_try_module_get(int family), nf_ct_l3proto_module_put(int) – request
and release connection tracking module for layer-3 protocol (used by matches)
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B Tricks and traps
B.1 Use of double exclamation mark
The C programming language has three (as far as the problem described here is concerned)
binary operations (&, |, ^), but only two logical operations (&&, ||). Additionally, false is
represented by the integer value 0, and true is represented by the integer value 1, however,
all non-zero values also evaluate to true. If the binary XOR is used as a substitute for logical
XOR, we must make sure that both operands are in the logical/boolean domain (0 or 1), not
in the numeral domain (0..INT_MAX), or unwanted side effects happen. Consider

if ((foo == bar) ^ (flags & 0x80))

Assuming foo does equal bar (i. e. is true) and flags does have 0x80 set (i. e. evaluates to
true), the result of the binary XOR operation will be 0x81 (which also evaluates to true).
Using a double negation “!!”, 0x80 is mapped into the logical domain (!!0x80 = !0 = 1),
and so, 1 ^ 1 will yield 0, which evaluates to false.

if ((foo == bar) ^ !!(flags & 0x80))

C Kernel/Xtables-addons differences
This is a list of compatibility decisions for Xtables-addons 1.27:

• Xtables-addons targets always use struct sk_buff ** (double indirection) as their first
argument irrespective of the real Xtables signature, which would have been struct
sk_buff * from 2.6.24 onwards.

• 2.6.25 introduced NF_INET_ constants. Xt-a provides them for older kernels.

• 2.6.29 obsoleted NIPQUAD_FMT/NIP6_FMT, NIPQUAD/NIP6; Xt-a continues to provides these,
since the new printk specifiers %pI4/%pI6 are not available on older kernels.
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