
The Netlink protocol: Mysteries Uncovered

Jan Engelhardt

rev. 2010-October-30

Abstract

Netlink is a bitstream protocol for communication between the Linux kernel and
userspace. It intends to replace ioctl calls, especially in the area of networking config-
uration, but is also being used for configuration other local services.

Copyright © 2010 Jan Engelhardt <jengelh (at) medozas.de>.
This work is made available under the Creative Commons Attribution-Noncom-
mercial-Sharealike 3.0 (CC-BY-NC-SA) license. See http://creativecommons.org/
licenses/by-nc-sa/3.0/ for details. (Alternate arrangements can be made with the
copyright holder(s).)
Additionally, modifications to this work must clearly be indicated as such, and the
title page needs to carry the words “Modified Version” if any such modifications
have been made, unless the release was done by the designated maintainer(s). The
Maintainers are members of the Netfilter Core Team, and any person(s) appointed
as maintainer(s) by the coreteam.

1

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/


About the author

Jan is a consultant for systems and network administration with a strong focus on Linux-based
environments. He uses Linux since fall 1999, and is involved in kernel development since 2003.
His latest significant activities are in the field of firewalling with Netfilter and Xtables.

Thanks

Many thanks to Pablo Neira Ayuso who, with the release of libmnl, brought Netlink a lot closer
to me.

Prerequisites

The reader should bring along an understanding of the C programming language, TCP/UDP
networking and the POSIX socket API (which is not to be confused with the BSD socket
API, even though they share similarities) as per http://www.opengroup.org/onlinepubs/
9699919799/functions/contents.html.

This book is designed for, and made available in ISO A4 format, for the simple reason that
most regular printed books have anything but a standard size.

2

http://www.opengroup.org/onlinepubs/9699919799/functions/contents.html
http://www.opengroup.org/onlinepubs/9699919799/functions/contents.html


Contents
1 Introduction 4

2 Netlink sockets 7

3 Message construction 11

4 Broadcasting 11

5 Using libmnl 11

6 Kernel side 11

7 Subsystems 11

8 asd 11

3



1 Introduction

1.1 Overview

Netlink is a protocol used within the Linux operating system, for communication between kernel
and userspace. It is described in RFC 35491 also as an intra-kernel protocol. In fact, it can
also be “abused” as a userspace-to-userspace communications channel.
The structure of Netlink messages is basically a serialized packed stream of a hierarchial tree
made of message headers and attributes. Nesting is possible; each attribute value is, with-
out knowing the attribute more closely, just raw data, reminiscient of how IPv6-in-IPv6 is
constructed, for example.

1.2 A bit of history

The driver was initially written by Alan Cox under the codename “Skiplink”2 as a character
device /dev/netlink for Linux kernel v1.3.31 dated 1995-Oct-04, where it was already included
under the filename netlink.c, before it was superseded by Alexey Kuznetsov’s socket-based
variant af_netlink.c in v2.1.68 (1997-Dec-01), which also brought along rtnetlink that pro-
vided for network interface and routing configuration. (struct nlmsghdr exists since v2.1.15.)

1.3 RFC critique

The RFC has some academic bingo (cf. marketing bingo) terminology that at first may seem
to have absolutely no relation to more well-known components, and only starting clearing up
them in chapter 2. So if the RFC’s Abstract put you off from reading the RFC, here’s the deal:

• Control Plane (CP) – an execution environment: Userspace, usually.

• Control Plane Component (CPC): Daemon

• Forwarding Engine (FE): Kernel

• Forwarding Engine Component (FEC): Kernel subsystem

Of course one could also run a CPC/daemon in kernelspace, which is why CP is in fact not
necessarily userspace.
While the choice of “forwarding engine” may still work out with configuring the Linux network-
ing stack, this stops making sense when one talks about non-networking subsystems, such as
DiskQuota3 and Kobject Events4.

1.4 Differences to IP

Users are most familiar with creating well-known IP-layer sockets, such as

int sk = socket(AF_INET6, SOCK_STREAM, IPPROTO_TCP);
sk = socket(AF_INET6, SOCK_STREAM, IPPROTO_SCTP);

1The first RFC I’ve encountered that documents a (currently) Linux-specific interface. Oh well, just wait
until other operating systems adopt it.

2SKIP is “Simple Key Management for Internet Protocols”, a 1994 Internet Draft.
3Delivers quota status messages via Netlink starting v2.6.24.
4Udev reads those, for example.

4



This would give them a socket that operates in stream mode. After setting up all the parameters
and establishing a connection, one can write — in fact, stream — data to the socket, which
will then take care of chopping stuff up or joining it accordingly. In stream mode, reads and
writes generally have no correspondence to any sort of packet boundaries.
Second, there is datagram mode, reads and writes do correspond to packet boundaries. Even if
a read cannot be completely satisfied, for example because the userspace buffer was too small,
the packet will be consumed, in other words, you may lose bytes.

sk = socket(AF_INET6, SOCK_DGRAM, IPPROTO_UDP);

Up to here, people may have also worked with local UNIX sockets that operate in very much
the same fashion.

sk = socket(AF_LOCAL, SOCK_STREAM, 0);
sk = socket(AF_LOCAL, SOCK_DGRAM, 0);

The local sockets do not use any particular transport protocol — AF_LOCAL is the transport
so to say, so the 3rd argument is just zero. Actually, the current Linux kernel allows using
socket(AF_LOCAL, *, AF_LOCAL). With local sockets also comes the introduction of a third
mode, datagrams that are processed in sequential order. As it stands, SCTP also offers this5.

sk = socket(AF_LOCAL, SOCK_SEQPACKET, 0);
sk = socket(AF_INET6, SOCK_SEQPACKET, IPPROTO_SCTP);

Of course there are many other possibilities. One of the newer additions is DCCP, which has
no SOCK_DGRAM type even though DCCP is pretty much an (unreliable) datagram service.

sk = socket(AF_INET6, SOCK_DCCP, IPPROTO_DCCP);

However, let’s leave it at that. What all of these modes have in common is that the operating
system will cater for generating the headers that, together with the data, will form the packet.
Similarly, on reception, the headers will be stripped again by the OS. The metainformation
that is in these headers, like peer’s address and/or port number are not lost though, but
exposed through the socket API (5th argument to recvfrom(2); or 2nd arg to accept(2); or
getpeername(2)).

1.5 When it gets raw

The next level of freedom (and more work) are so-called raw sockets, where the userspace
program has to take care of crafting all the packets, including (layer-4) headers.

struct {
struct udphdr u;
char buf[64];

} pkt;
struct sockaddr_in6 dst = {

.sin6_family = AF_INET6,
};

5This is indeed part of the SCTP specification, not a strange Linux enhancement.

5



int sk = socket(AF_INET6, SOCK_RAW, IPPROTO_UDP);
pkt.u.source = htons(1234);
pkt.u.dest = htons(53);
pkt.u.len = sizeof(pkt);
pkt.u.check = 0;
inet_pton(AF_INET6, "::1", &dst.sin6_addr);
snprintf(pkt.buf, sizeof(pkt.buf), "Hello World");
sendto(sk, &pkt, sizeof(pkt), 0, &dst, sizeof(dst));

The IPv4 and IPv6 raw sockets also support remembering the address using connect(2) so
that one can use send(2) instead of sendto(2). bind(2) is also supported in case a custom
source address is desired. dst.sin6_port is ignored, as the ports are provided in pkt already.
Specifying IPPROTO_UDP at socket creation time is a must, as that is what the IP header will
get for the Next Header field.
One can also choose to build the layer-3 header by themselves, by using IPPROTO_RAW.

socket(AF_INET6, SOCK_RAW, IPPROTO_RAW);
socket(AF_INET, SOCK_RAW, IPPROTO_RAW);
struct {

struct ip6_hdr ih;
struct udphdr u;
char buf[64];

} pkt;
...

There is a subcase of IPv4 raw sockets:

static const int y = 1;
int sk = socket(AF_INET, SOCK_RAW, IPPROTO_UDP);
setsockopt(sk, SOL_IP, IP_HDRINCL, &y, sizeof(y));

IPv6 does not have IP_HDRINCL, as per RFC 3542 section 3. Trying to use it nevertheless with
the SOL_IPV6 socket level will actually lead to the IPV6_2292HOPOPTS option being set, which
has the same value as IP_HDRINCL.
And finally, there is the ultimate socket interface where one has access to layer-2 too, on a
cooked basis and raw basis, but which we won’t go further into detail here:

sk = socket(AF_PACKET, SOCK_DGRAM, htons(ETH_P_ALL)); /* cooked */
sk = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_ALL)); /* raw */

6



2 Netlink sockets

2.1 Services

The kernel provides a number of Netlink services, the list of which is below. These constants
are used for the third argument to the socket(2) system call, in this context also referred to as
Netlink families. Services use their own protocol that is derived from the Netlink base protocol.
It is imperative that the proper protocol is spoken on a particular socket type, e. g. rtnetlink
messages on NETLINK_ROUTE. Currently used services include:

• NETLINK_ROUTE – Routing as done with the ip(8) tool from the iproute2 packag.

• NETLINK_XFRM – Transformation database, i. e. IPsec and IPCOMP.

• NETLINK_FIREWALL – “Firewalling hook”. This is used by ip_queue (obsoleted by libnet-
filter_queue) to send packets to userspace, and receive reinjected packets or verdicts from
userspace.

• NETLINK_INET_DIAG – Socket state monitoring using the ss(8) from the iproute2 package.

• NETLINK_NFLOG – Used by the ipt_ULOG and ebt_ulog targets. Probably obsoleted
by libnetfilter_queue and/or libnetfilter_log.

• NETLINK_SELINUX Event notifications from SELinux.

• NETLINK_ISCSI Delivery of control PDUs from (Open)-iSCSI to userspace.

Significant initial confusion can ensue due to Netlink sockets always operating in raw mode.
Malformed packets may be silently ignored by an operating system, and this is currently the
case for Linux, though error reporting can be enabled if at least the nlmsghdr is correct.
##In contrast to what the RFC says, basic Netlink delivery is unicast, with the kernel side
having the option to send broadcasts, such as gratitious network interface state change notifi-
cations, to attached listeners.##

2.2 Dissection

While Netlink sockets can be created using both SOCK_DGRAM and SOCK_RAW, they will currently
both lead to a raw socket of the lowest level where no headers are ever autogenerated. This
makes the initial understanding of Netlink harder than it needs to be, because we are so used
to work ourselves from upper layers to lower ones rather than vice-versa.
AF_NETLINK, as well as AF_LOCAL, to include it in the picture for comparison, are both protocols
for which it is hard to assign exact OSI layer numbers to them. Since they are limited to the
local host, they are unlikely to lie anywhere below layer 4. Support for sequenced packets
and/or streaming are also typical properties of layer 4. The following non-normative hint table
should help relate.

AF_INET6 AF_NETLINK AF_LOCAL
Layer 3 ipv6hdr
Layer 4 tcphdr sockaddr_nl+nlmsghdr sockaddr_un

4 (NETLINK_subsys)
4 rtgenmsg / ifaddrmsg / etc.

Layer 7 (data) (attrs) (data)

7



Netlink is a little bit strange in many regards when comparing to other socket types. Whereas
struct tcphdr contains both source and destination locations, this information is split into
nlmsghdr.nlmsg_pid and sockaddr_nl.nl_pid, respectively. Furthermore, Netlink messages
carry no “Next Header” field akin to IPv6’s NextHdr in struct nlmsghdr, so the actual pro-
tocol is implicitly given by the chosen Netlink family. Finally, struct rtgenmsg could be seen
as taking the role of IPv6’s Extension Headers, though it is mandatory rather than optional
like an ExtHdr.

2.3 Simple user-to-user communication

The fact that the Linux kernel does not do any checks on Netlink packets when the destination
of a datagram is not the kernel
allows for an interesting abuse of Netlink (which has originally been specified as a kernel-
userspace communication channel). This also makes it possible to start understanding Netlink
in smaller pieces. Let us thus begin with a code sample:

#include <sys/socket.h>
#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <linux/netlink.h>

int main(void)
{

ssize_t ret;
char buf[] = "Hello world";
struct sockaddr_nl dst = {

.nl_family = AF_NETLINK,

.nl_pid = getpid(),
};
int sk = socket(AF_NETLINK, SOCK_RAW, 0);
if (sendto(sk, buf, strlen(buf), 0,

(void *)&dst, sizeof(dst)) < 0) {
perror("sendto");
abort();

}
ret = recv(sk, buf, sizeof(buf), 0);
if (ret < 0) {

perror("recv");
abort();

}
printf("%.*s\n", (int)ret, buf);
return EXIT_SUCCESS;

}

This creates a Netlink socket and starts sending some data (in this case, our “Hello World”
string including trailing ’\0’ byte) to the specified destination, which, as chosen here, is the
sending program itself. It is also possible to separate the sending and receiving side into two

8



separate programs — and thus processes —, and to then specify the PID of the other process
in dst.nl_pid. However, nl_pid does NOT actually specify a PID, but a Netlink address.
More on that soon.
The careful reader may notice that sendto(2) may block and that recv(2) in fact may never
be called. For brevity of code examples, some error checking is omitted, and it is assumed that
the generic socket buffer will take care of this, so that there is room for queueing a few Netlink
messages and not immediately block.

2.4 Socket addresses
Most socket types allow to use bind(2) to preselect the socket address — or part of it —
that is to be used for further communication. It is possible to specify partial desires, such as
[::]:12345 and [2a01::db8]:0, in which case the zero fields will be filled in later at connect
time. This is convenient if you want a specific source port, but do not want to deal with the
outgoing address. If bind(2) is not explicitly called, it will be implicity invoked by the operating
system when one is about to establish a connection and/or send a datagram. An appropriate
address will be selected that the remote peer can reach too.
For Internet protocols, Linux will do a route lookup to the destination, and the “src” attribute
of the resulting route is used. The routing tables can be viewed with ‘ip route show table
all‘, and an actual route lookup can be performed on the command line using, for example,
‘ip route get 2a00:1450:8004::67‘.
Netlink also supports explicit bind(2), and one might actually wonder whether that would not
perhaps be a security risk if a process could impersonate another:

struct sockaddr_nl lo = {
.nl_family = AF_NETLINK,
.nl_pid = 1,

};
/* Look, I’m init! */
bind(sk, &lo, sizeof(lo));
/* Or not. */

However, nl_pid identifies a Netlink socket, not a process. nl_pid should better be thought
of as “nl_port”. Unlike Internet protocols, there are no privileged “ports”, or actually: socket
addresses, reachable in Netlink. An nl_pid of zero expresses a wildcard for bind(2), and is
interpreted as “kernel” as a destination for send(2), so there is no way to get socket #0 in
userspace. Even if there was (imagine fd passing from the kernel down through AF_LOCAL’s
SCM_RIGHTS option), it would probably fail since the kernel already has that socket address in
use. ## diff famililes?
Like IP sockets, Netlink sockets get automatically bound to a free socket address when bind(2)
was not used, and getsockname(2) can be used to retrieve the address after it has been filled
in. It can be observed that sockaddr_nl.nl_pid is usually set to the current process’s PID,
but given each socket’s address must be, and is, unique, other numbers will be chosen for when
the address is already in use. This is very easy to provoke: just create two sockets in the same
process.

static const struct sockaddr_nl dst = {.nl_family = AF_NETLINK};
sk_1 = socket(AF_NETLINK, SOCK_RAW, 0);
sk_2 = socket(AF_NETLINK, SOCK_RAW, 0);
sendto(sk_1, NULL, 0, 0, (void *)&dst, sizeof(dst));
sendto(sk_2, NULL, 0, 0, (void *)&dst, sizeof(dst));

9



When there is a collision during autobinding, the Linux kernel will fallback to picking numbers
decreasing monotonically from -4097 onwards. This selection however is an implementation
detail that your C programs should not concern with.
To get an overview of the currently-active Netlink sockets in the system, use ‘ss -f netlink‘.

10



3 Message construction
In general, Netlink messages are rather simple, and it is only the amount of nesting one can do
that makes them look a bit more complex on first sight. A basic message consists of a message
header and its data. There may be padding after the header to have the data portion aligned,
and there may be padding after the data, to have a subsequent message also aligned correctly.

struct nlmsghdr {
uint32_t nlmsg_len;
uint16_t nlmsg_type;
uint16_t nlmsg_flags;
uint32_t nlmsg_seq;
uint32_t nlmsg_pid;

};

nlmsg_len The entire length of the message, including header, padding, data and trail padding.

4 Broadcasting

5 Using libmnl

6 Kernel side

7 Subsystems
NFNETLINK/GENETLINK

8 asd

There are more types defined, but there is currently no corresponding code in the Linux kernel
to interpret them.
nlmsg_seq

11



Index
NETLINK_FIREWALL, 7
NETLINK_INET_DIAG, 7
NETLINK_ISCSI, 7
NETLINK_NFLOG, 7
NETLINK_ROUTE, 7
NETLINK_SELINUX, 7
NETLINK_XFRM, 7

12


